Skip to main content
Log in

Transients of fractional-order integrator and derivatives

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Although fractional-order differentiation is generallyconsidered as the basis of fractional calculus, we demonstrate in this paper that the real basis is in fact fractional-order integration, mainly because definition and properties of fractional differentiation rely deeply on fractional integration. A second objective of this paper is to demonstrate that mastery of initial conditions as an infinite dimensional state variable allows analysis of the transients (or free responses) of the fractional integrator and derivatives. Thus, this paper is focused on fractional integration and particularly on the fractional integrator, which is an infinite dimension integer-order differential system. Consequently, the properties of this integrator are linked to its infinite dimension state variable and the mastery of its transients rely on the knowledge of its initial conditions. Its frequency distributed model is introduced, and its transients are analyzed; a finite dimension approximation of the fractional integrator is defined and validated. Numerical simulations exhibit the essential role played by the initial state vector. The definitions of the Caputo and Riemann-Liouville fractional derivatives exhibit two fundamental operations: integer-order differentiation and fractional-order integration. Thus, the transients of these two derivatives rely on the mastery of the infinite state variable of the associated fractional integrator. The Laplace transform equations of the explicit derivatives are revisited: the main result is that usual relations are wrong because the initial conditions of the associated fractional integrator are not taken into account. Finally, with the help of numerical simulations, we show that practical initialization and transients analysis of the explicit derivatives depend essentially on the mastery of the integrator initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benchellal A.: Modélisation des interfaces de diffusion à l’aide d’opérateurs d’intégration fractionnaires. Thèse de doctorat, Université de Poitiers, France (2008)

    Google Scholar 

  2. Caputo M.: Elasticita e Dissipazione. Zanichelli, Bologna (1969)

    Google Scholar 

  3. Chatterjee A.: Statistical origins of fractional derivatives in viscoelasticity. J. Sound Vib. 284, 1239–1245 (2005)

    Article  Google Scholar 

  4. Diethelm K., Ford N.J.: Numerical solution of the Bagley-Torvik equation. BIT 42(3), 490–507 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Diethelm K.: An investigation of some non classical methods for the numerical approximation of Caputo-type fractional derivatives. Numer. Algorithms 47, 361–390 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gambone, T., Hartley, T., Adams, J., Veillette, R., Lorenzo, C.: An experimental validation of the initialisation response in fractional order systems. In: Proceedings of IDETC/CIE FDTA’2011 Conference, Washington DC, USA (2011)

  7. Hartley T.T., Lorenzo C.L.: Dynamics and control of initialized fractional order system. Nonlinear Dyn. 29, 201–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hartley, T.T., Lorenzo, C.F.: The error incurred in using the Caputo derivative Laplace transform. In: Proceedings of the ASME IDET-CIE Conferences San Diego, California, USA (2009)

  9. Heleschewitz, D., Matignon, D.: Diffusive realizations of fractional integro-differential operators: structural analysis under approximation. In: Conference IFAC, System, Structure and Control, vol. 2, pp. 243–248, Nantes, France (1998)

  10. Helechewitz D.: Analyse et simulation de systèmes différentiels fractionnaires et pseudo-différentiels sous representation diffusive. thèse de doctorat, ENST Paris (2000)

    Google Scholar 

  11. Kailath T.: Linear Systems. Prentice Hall Inc, Englewood, Cliffs (1980)

    MATH  Google Scholar 

  12. Li, Y., al.: Mittag-Leffler stability of fractional order non linear dynamic systems. In: 3rd IFAC Symposium FDA’08 Ankara, Turkey (2008)

  13. Lin, J., Poinot, T., Trigeassou, J.C.: Parameter estimation of fractional systems: application to the modelling of a lead-acid battery. 12th IFAC Symposium on System Identification, SYSID 2000, USA (2000)

  14. Lin, J., Poinot, T., Trigeassou, J.C.: Parameter estimation of fractional systems: application to heat transfer. In: Proceedings of the European Control Conference (ECC’01), Porto, Portugal, pp. 2644–2649 (2001)

  15. Lorenzo, C.F., Hartley, T.T.: Initialization in fractional order systems. In: Proceedings of the European Control Conference (ECC’01), Porto, Portugal, pp. 1471–1476 (2001)

  16. Lorenzo C.F., Heartley T.T.: Initialization of fractional order operators and fractional differential equations. Special issue on fractional calculus of ASME. J. Comput. Nonlinear Dyn. 3, 021101 (2008)

    Article  Google Scholar 

  17. Lorenzo, C., Hartley, T.: Time-varying initialization and Laplace transform of the Caputo derivative: with order between zero and one. In: Proceedings of IDETC/CIE FDTA’2011 Conference, Washington DC, USA (2011)

  18. Manabe S.: The non integer integral and its application to control systems. J. Inst. Electr. Eng. Jpn 6(3/4), 589–597 (1960)

    Google Scholar 

  19. Matignon D.: Représentations en variables d’état de modèles de guides d’ondes avec dérivation fractionnaire. Thèse de Doctorat. Université de Paris XI, ORSAY (1994)

    Google Scholar 

  20. Miller K.S., Ross B.: An introduction to the fractional calculus and fractional differential equations. Wiley, New-York (1993)

    MATH  Google Scholar 

  21. Monje C.A., Chen Y.Q., Vinagre B.M., Xue D., Feliu V.: Fractional Order Systems and Control. Springer, London (2010)

    Book  Google Scholar 

  22. Montseny, G.: Diffusive representation of pseudo differential time operators. In: Proceedings ESSAIM, vol. 5, pp. 159–175 (1998)

  23. Oldham K.B., Spanier J.: The Fractional Calculus. Academic Press, New-York (1974)

    MATH  Google Scholar 

  24. Ortigueira M.D.: On the initial conditions in continuous-time fractional linear systems. Signal Process. 83, 2301–2309 (2003)

    Article  MATH  Google Scholar 

  25. Ortigueira, M.D., Coito, F.J.: Initial conditions: what are we talking about?. 3rd IFAC workshop, FDA’08, Ankara, Turkey, pp. 5–7 (2008)

  26. Oustaloup A.: Systèmes asservis linéaires d’ordre fractionnaire. Masson, Paris (1983)

    Google Scholar 

  27. Oustaloup A.: La commande CRONE. Hermès, Paris (1991)

    MATH  Google Scholar 

  28. Oustaloup A.: La dérivation non entière: théorie, synthèse et applications. Hermès, Paris (1995)

    MATH  Google Scholar 

  29. Oustaloup A., Mathieu B.: La commande CRONE, du scalaire au multivariable. Hermès, Paris (1995)

    Google Scholar 

  30. Podlubny, I., Dorcak, L., Kostial, I.: On fractional derivatives, fractional order systems and PID control. In: Proceedings of the Conference on Decision and Control, San Diego (1997)

  31. Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  32. Poinot T., Trigeassou J.C.: Parameter estimation of fractional models: application to the modelling of diffusive systems. 15th IFAC World Congress, Barcelona, Spain (2002)

    Google Scholar 

  33. Poinot T., Trigeassou J.C.: A method for modelling and simulation of fractional systems. Signal Process. 83, 2319–2333 (2003)

    Article  MATH  Google Scholar 

  34. Retiere, N., Ivanes, M.: Modeling of electrical machines by implicit derivative half-order systems. In: IEEE Power Eng. Rev., vol. 18, no. 9, pp. 62–64 (1998)

  35. Sabatier, J., et al.: On a representation of fractional order systems: interests for the initial condition problem. 3rd IFAC workshop, FDA’08, Ankara, Turkey, pp. 5–7 (2008)

  36. Sabatier, J., Merveillaut, M., Feneteau, L., Oustaloup, A.: On observability of fractional order systems. In: Proceedings of the ASME IDET-CIE Conferences San Diego, California, USA (2009)

  37. Sabatier J., Merveillaut M., Malti R., Oustaloup A.: How to impose physically coherent initial conditions to a fractional system?. Commun. Non Linear Sci. Numer. Simul. 15(5), 1318–1326 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Trigeassou, J.C., et al.: Modelling and identification of a non integer order system. In: ECC’99 European Control Conference, KARLSRUHE, Germany (1999)

  39. Trigeassou, J.C., Maamri, N.: State-Space Modelling of Fractional Differential Equations and the Initial Condition Problem. IEEE SSD’09, Djerba, Tunisia (2009)

  40. Trigeassou, J.C., Maamri, N.: The initial conditions of Riemman-Liouville and Caputo derivatives: an integrator interpretation. In: FDA’2010 Conference, Badajoz, Spain (2010)

  41. Trigeassou J.C, Maamri N.: Initial conditions and initialization of linear fractional differential equations. Signal Process. 91(3), 427–436 (2011)

    Article  MATH  Google Scholar 

  42. Trigeassou J.C, Maamri N., Sabatier J., Oustaloup A.: A Lyapunov approach to the stability of fractional differentiel equations. Signal Process. 91(3), 437–445 (2011)

    Article  MATH  Google Scholar 

  43. Trigeassou J.C., Oustaloup A.: Fractional Integration: A Comparative Analysis of Fractional Integrators. IEEE SSD’11, Sousse Tunisia (2011)

    Google Scholar 

  44. Trigeassou, J.C., Maamri, N., Oustaloup, A.: Initialization of Riemann-Liouville and Caputo fractional derivatives. In: Proceedings of IDETC/CIE FDTA’2011 Conference, Washington DC, USA (2011)

  45. Trigeassou J.C., Maamri N., Oustaloup A.: Automatic Initialization of the Caputo Fractional Derivative. CDC-ECC 2011, Orlando, USA (2011)

    Google Scholar 

  46. Trigeassou J.C., Maamri N., Benchellal A., Oustaloup A.: Experimental Validation of the Fractional Order Initialization Technique with a Heat Transfer System. FDA’2012, Nanjing, China (2012)

    Google Scholar 

  47. Trigeassou J.C., Maamri N., Oustaloup A.: State Variables, Initial Conditions and Transients of Fractional Order Derivatives and Systems. Plenary Speech, FDA’2012, Nanjing, China (2012)

    Google Scholar 

  48. Tricaud C., Chen Y.Q.: An approximated method for numerically solving fractional order optimal control problems of general form. Comput. Math. Appl. 59, 1644–1655 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yuan L., Agrawal O.P.: A numerical scheme for dynamic systems containing fractional derivatives. J. Vib. Acoust. 124, 321–324 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Trigeassou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trigeassou, J.C., Maamri, N., Sabatier, J. et al. Transients of fractional-order integrator and derivatives. SIViP 6, 359–372 (2012). https://doi.org/10.1007/s11760-012-0332-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0332-2

Keywords

Navigation