Skip to main content
Log in

Wavelet shrinkage: unification of basic thresholding functions and thresholds

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This work addresses the unification of some basic functions and thresholds used in non-parametric estimation of signals by shrinkage in the wavelet domain. The soft and hard thresholding functions are presented as degenerate smooth sigmoid-based shrinkage functions. The shrinkage achieved by this new family of sigmoid-based functions is then shown to be equivalent to a regularization of wavelet coefficients associated with a class of penalty functions. Some sigmoid-based penalty functions are calculated, and their properties are discussed. The unification also concerns the universal and the minimax thresholds used to calibrate standard soft and hard thresholding functions: these thresholds pertain to a wide class of thresholds, called the detection thresholds. These thresholds depend on two parameters describing the sparsity degree for the wavelet representation of a signal. It is also shown that the non-degenerate sigmoid shrinkage adjusted with the new detection thresholds is as performant as the best up-to-date parametric and computationally expensive method. This justifies the relevance of sigmoid shrinkage for noise reduction in large databases or large size images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donoho D.L., Johnstone I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bruce A.G., Gao H.Y.: Understanding waveshrink: variance and bias estimation. Biometrika 83(4), 727–745 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Donoho D.L., Johnstone I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Atto, A.M., Pastor, D., Mercier, G.: Detection threshold for non-parametric estimation. Signal, Image and Video Processing, vol. 2(3). Springer, Heidelberg (2008)

  5. Simoncelli, E.P., Adelson, E.H.: Noise removal via bayesian wavelet coring. IEEE Int. Conf. Image Proc. (ICIP) 379–382 (1996)

  6. Do M.N., Vetterli M.: Wavelet-based texture retrieval using generalized gaussian density and kullback-leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002)

    Article  MathSciNet  Google Scholar 

  7. Şendur L., Selesnick I.V.: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Process. 11, 2744–2756 (2002)

    Google Scholar 

  8. Portilla J., Strela V., Wainwright M.J., Simoncelli E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  9. Johnstone I.M., Silverman B.W.: Empirical bayes selection of wavelet thresholds. Ann. Stat. 33(4), 1700–1752 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. ter Braak C.J.F.: Bayesian sigmoid shrinkage with improper variance priors and an application to wavelet denoising. Comput. Stat. Data Anal. 51(2), 1232–1242 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gao H.Y.: Waveshrink shrinkage denoising using the non-negative garrote. J. Comput. Graph. Stat. 7(4), 469–488 (1998)

    Article  Google Scholar 

  12. Antoniadis A., Fan J.: Regularization of wavelet approximations. J. Am. Stat. Assoc. 96(455), 939–955 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Luisier F., Blu T., Unser M.: A new sure approach to image denoising: interscale orthonormal wavelet thresholding. IEEE Trans. Image Process. 16(3), 593–606 (2007)

    Article  MathSciNet  Google Scholar 

  14. Atto, A.M., Pastor, D., Mercier, G.: Smooth sigmoid wavelet shrinkage for non-parametric estimation. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP, Las Vegas, Nevada, USA, 30 March–4 April (2008)

  15. Pastor, D., Atto, A.M.: Sparsity from binary hypothesis testing and application to non-parametric estimation. European Signal Processing Conference, EUSIPCO, Lausanne, Switzerland, August 25–29 (2008)

  16. Benedetto, J.J., Frasier, M.W.: Wavelets : Mathematics and applications. CRC Press, Boca Raton (1994), chap. 9: Wavelets, probability, and statistics: Some bridges, by Christian Houdré, pp. 365–398

  17. Zhang J., Walter G.: A wavelet-based KL-like expansion for wide-sense stationary random processes. IEEE Trans. Signal Process. 42(7), 1737–1745 (1994)

    Article  Google Scholar 

  18. Leporini D., Pesquet J.-C.: High-order wavelet packets and cumulant field analysis. IEEE Trans. Inf. Theory 45(3), 863–877 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Atto A.M., Pastor D., Isar A.: On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process. Signal Process. 87(10), 2320–2335 (2007)

    Article  MATH  Google Scholar 

  20. Atto, A.M., Pastor, D.: Limit distributions for wavelet packet coefficients of band-limited stationary random processes. European Signal Processing Conference, EUSIPCO, Lausanne, Switzerland, 25–28 August (2008)

  21. Flandrin P.: Wavelet analysis and synthesis of fractional brownian motion. IEEE Trans. Inf. Theory 38(2), 910–917 (1992)

    Article  MathSciNet  Google Scholar 

  22. Tewfik A.H., Kim M.: Correlation structure of the discrete wavelet coefficients of fractional brownian motion. IEEE Trans. Inf. Theory 38(2), 904–909 (1992)

    Article  MathSciNet  Google Scholar 

  23. Dijkerman R.W., Mazumdar R.R.: On the correlation structure of the wavelet coefficients of fractional brownian motion. IEEE Trans. Inf. Theory 40(5), 1609–1612 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kato T., Masry E.: On the spectral density of the wavelet transform of fractional brownian motion. J. Time Ser. Anal. 20(50), 559–563 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Craigmile P.F., Percival D.B.: Asymptotic decorrelation of between-scale wavelet coefficients. IEEE Trans. Inf. Theory 51(3), 1039–1048 (2005)

    Article  MathSciNet  Google Scholar 

  26. Antoniadis A.: Wavelet methods in statistics: some recent developments and their applications. Stat. Surveys 1, 16–55 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Berman S.M.: Sojourns and Extremes of Stochastic Processes. Wadsworth and Brooks/Cole, USA (1992)

    MATH  Google Scholar 

  28. Mallat S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, New York (1999)

    MATH  Google Scholar 

  29. Coifman, R.R., Donoho, D.L.: Translation invariant de-noising. Lect. Notes Stat. (103), 125–150 (1995)

  30. Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  31. Sveinsson J.R., Benediktsson J.A.: Speckle reduction and enhancement of sar images in the wavelet domain. Geosci. Remote Sens. Symp. IGARSS 1, 63–66 (1996)

    Article  Google Scholar 

  32. Xie H., Pierce L.E., Ulaby F.T.: Sar speckle reduction using wavelet denoising and markov random field modeling. IEEE Trans. Geosci. Remote Sens. 40(10), 2196–2212 (2002)

    Article  Google Scholar 

  33. Argenti F., Bianchi T., Alparone L.: Multiresolution map despeckling of sar images based on locally adaptive generalized gaussian pdf modeling. IEEE Trans. Image Process. 15(11), 3385–3399 (2006)

    Article  Google Scholar 

  34. Buades A., Coll B., Morel J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Johnstone I.M., Silverman B.W.: Wavelet threshold estimators for data with correlated noise. J. Royal Stat. Soc. Ser. B 59(2), 319–351 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  36. Müller J.W.: Possible advantages of a robust evaluation of comparisons. J. Res. Natl. Inst. Stand. Technol. 105(4), 551–555 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdourrahmane M. Atto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atto, A.M., Pastor, D. & Mercier, G. Wavelet shrinkage: unification of basic thresholding functions and thresholds. SIViP 5, 11–28 (2011). https://doi.org/10.1007/s11760-009-0139-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-009-0139-y

Keywords

Navigation