Skip to main content
Log in

Microarray image enhancement by denoising using decimated and undecimated multiwavelet transforms

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a new approach to deal with the noise inherent in the microarray image processing procedure. We use the denoising capabilities of decimated and undecimated multiwavelet transforms, DMWT and UMWT respectively, for the removal of noise from microarray data. Multiwavelet transforms, with appropriate initialization, provide sparser representation of signals than wavelet transforms so that their difference from noise can be clearly identified. Also, the redundancy of the UMWT transform is particularly useful in image denoising in order to capture the salient features such as noise or transients. We compare this method with the discrete and stationary wavelet transforms, denoted by DWT and SWT, respectively, and the Wiener filter for denoising microarray images. Results show enhanced image quality using the proposed approach, especially in the undecimated case in which the results are comparable and often outperform that of the stationary wavelet transform. Both multiwavelet transforms outperform the DWT and the Wiener filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Southern E.M.: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517 (1975)

    Article  Google Scholar 

  2. Schena M., Shalon D., Davis R.W., Brown P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)

    Article  Google Scholar 

  3. Fodor S.P.A., Read J.L., Pirrung M.C., Stryer L., Lu A.T., Solas D.: Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991)

    Article  Google Scholar 

  4. Perou C.M., Jeffrey S.S., Van de Rijn M., Rees C.A., Eisen M.B., Ross D.T., Ergamenschikov A., Williams C.F., Zhu S.X., Lee J.C.F., Lashkari D., Shalon D., Brown P.O., Botstein D.: Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl. Acad. Sci. 96, 9212–9217 (1999)

    Article  Google Scholar 

  5. Scearce L.M., Brestelli J.E., McWeeney S.K., Lee C.S., Mazzarelli J.P., Deborah F., Pizarro A.S., Stoechert C.J. Jr., Sandra S.P., Permutt M.A., Brown J., Douglas A., Kasestner K.H.: Functional genomics of the endocrine pancreas: the pancreas clone set and Pancchip, new resources for diabetes research. Diabetes 51, 1997–2004 (2002)

    Article  Google Scholar 

  6. Nadler S.T., Stoehr J.P., Schueler K.L., Tanimoto G., Yandel B.S., Attie A.D.: The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc. Natl. Acad. Sci. 97, 11371–11376 (2000)

    Article  Google Scholar 

  7. Axon Instruments Inc., GenePix Pro User’s Guide. http://www.axon.com/com/, Software and Documentation (2001)

  8. Battiato, S., Di Blasi, G., Farinella, G.M., Gallo, G., Guarnera, G.C.: Ad-hoc segmentation pipeline for microarray image analysis. In: Proceedings of IS&T-SPIE 18th Annual Symposium Electronic Imaging Science and Technology 2006. Image Processing: Algorithms and Systems V, Tracking NO. EI06-EI112-15, San Jose, CA, USA, 15–19 January (2006)

  9. Steinfath M., Wruch W., Seidel H., Lehrach H., Radelof U., O’Brien J.: Automated image analysis for array hybridization experiments. Bioinformatics 17(7), 634–641 (2001)

    Article  Google Scholar 

  10. Bozinov D., Rahnenfuhrer J.: Unsupervised technique for robust target separation and analysis of DNA microarray spots. Bioinformatics 18(5), 747–756 (2002)

    Article  Google Scholar 

  11. Wruch W., Griffiths H., Steinfath M., Lehrach H., Radelof U., O’Brien J.: Xdigitise: visualization of hybridization experiments. Bioinformatics 18(5), 757–760 (2002)

    Article  Google Scholar 

  12. Zapala, M.A., Lockhart, D.J., Pankratz, D.G., Garcia, A.J., Barlow, C., Lockhard, D.J.: Software and methods for oligonucleotide and cDNA array data analysis. Genome Biol. 3(6) (2002)

  13. Jain A.N., Tokuyasu T.A., Snijders A.M., Segraves R., Albertson D.G., Pinkel D.: Fully automatic quantification of microarray image data. Genome Res. 12, 325–332 (2002)

    Article  Google Scholar 

  14. Kerr M.K., Martin M., Churchill G.A.: Analysis of variance gene expression microarray data. J. Comput. Biol. 7, 819 (2001)

    Article  Google Scholar 

  15. Chen, Y., Dougherty, E.R., Bittner, M.L.: Ratio-based decision the quantitative analysis of cDNA microarray images. J. Biomed. Opt. 364–374 (1997)

  16. Ermolaeva M.L., Rastogi M., Pruitt K.D., Schuler G.D., Bittner M.L., Chen Simon R., Meltzer P., Trent J.M., Boguski M.: Data management and analysis for gene expression arrays. Nat. Genet. 20, 19–23 (1998)

    Article  Google Scholar 

  17. Newton M.A., Kendziorski C.M., Richmond C.S., Blattner F.R., Tsui K.W.: On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. J. Computat. Biol. 8, 37–52 (2001)

    Article  Google Scholar 

  18. Lonnstedt I., Speed T.: Replicated microarray data. Stat. Sin. 12, 31–46 (2002)

    MathSciNet  Google Scholar 

  19. Dror, R., Murnick, J., Rinaldi, N.: A Bayesian approach to transcript estimation from gene array data: the BEAM technique. In: Proceedings of the 6th Anal. Int. Conf. Research in Computational Molecular Biology, Washington, DC, April (2002)

  20. Wang Y., Lu J., Lee R., Gu Z., Clarke R.: Iterative normalization of CDNA microarray data. IEEE Trans. Inf. Technol. Biomed. 6, 29–37 (2000)

    Article  Google Scholar 

  21. O’Neill P., Magoulas G.D.: Improved processing of microarray data using image reconstruction techniques. IEEE Trans. Nanobiosci. 2(4), 176–183 (2003) December

    Article  Google Scholar 

  22. Lukac R., Plataniotis K.N., Smolka B., Venetsanopoulos A.N.: cDNA microarray image processing using fuzzy vector filtering framework. J. Fuzzy Sets Syst. Special Issue on Fuzzy Sets and Systems in Bioinformatics 152(1), 17–35 (2005) May

    MATH  MathSciNet  Google Scholar 

  23. Mallat S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intel. 11, 674–693 (1989) July

    Article  MATH  Google Scholar 

  24. Chua L.O., Yang L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang, X.Y., Chen, F., Zhang, Y.T., Agner, S.G., Akay, M., Lu, Z.H., Waye, M.M.Y., Tsui, S.K.W.: Signal processing techniques in genomic engineering. In: Proceedings of the IEEE 90(12), 1822–1833, December (2002)

  26. Arena P., Bucolo M., Fortuna L., Occhipinty L.: Celular neural networks for real-time DNA microarray analysis. IEEE Engl. Med. Biol. 21, 17–25 (2002)

    Article  Google Scholar 

  27. Wang X.H., Istepanian R.S.H., Song Y.H.: Microarray image enhancement by denoising using stationary wavelet transform. IEEE Trans. Nanobiosci. 2(4), 184–189 (2003) December

    Article  Google Scholar 

  28. Pesquet J.C., Krim H., Carfantan H.: Time-invariant Orthonormal Wavelet Representations. IEEE Trans. Signal Process. 44, 1964–1970 (1996) August

    Article  Google Scholar 

  29. Adjeroh, D.A., Zhang, Y., Parthe, R.: On denoising and compression of DNA microarray images. Pattern Recogn., Special Issue on Bioinformatics, pp. 2478–2493, December (2006)

  30. Goodman T.N.T., Lee S.L.: Wavelets of multiplicity r. Trans. AMS 342, 307–324 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Strang G., Nguyen T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley (1995)

    Google Scholar 

  32. Vetterli M., Strang G.: Time-varying Filter Banks and Multiwavelets. Sixth IEEE DSP workshop, Yosemite (1994)

    Google Scholar 

  33. Nason G.P., Silverman B.W.: The stationary wavelet transform and some statistical applications. In: Antoniadis, A., Oppenheim, G. (eds) Wavelet and Statistics Lecture Notes in Statistics, pp. 281–300. Springer, Heidelberg (1995)

    Google Scholar 

  34. Strela, V., Walden, A.T.: Signal and Image Denoising via Wavelet Thresholding: Orthogonal and Biorthogonal, Scalar and Multiple Wavelet Transforms. Imperial College, Statistics Section, Technical Report TR-98–01 (1998)

  35. Goodman T.N.T., Lee S.L.: Wavelets of multiplicity r. Trans. AMS 342, 307–324 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Mallat S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intel. 11, 674–693 (1989) July

    Article  MATH  Google Scholar 

  37. Strang G., Nguyen T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley (1995)

    Google Scholar 

  38. Vetterli M., Strang G.: Time-varying Filter Banks and Multiwavelets. Sixth IEEE DSP workshop, Yosemite (1994)

    Google Scholar 

  39. Strela V., Heller P., Strang G., Topiwala P., Heil C.: The application of multiwavelet filter banks to signal and image processing. IEEE Trans. Image Process. 8, 548–563 (1999) April

    Article  Google Scholar 

  40. Donoho D.L., Johnstone I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  41. Coifman, R.R., Wickerhauser, M.V.: Entropy based algorithms for the best basis selection. IEEE Trans. Inf. Theory (38), 713–718 (1992)

  42. Daubechies: Ten Lectures on Wavelets. SIAM, Philadephia (1992)

  43. Geronimo J., Hardin D., Massopust P.R.: Fractal Functions and Wavelet Expansions Based on Several Functions. J. Approx. Theory 78, 373–401 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  44. Delfino, G., Martinez, F.: Watermarking Insertion in Digital Images (spanish). Available at: http://www.internet.com.uy/fabianm/watermarking.pdf, March (2000)

  45. Jain A.K.: Fundamentals of Digital Image Processing. Englewood Cliffs, New Jersey (1989)

    MATH  Google Scholar 

  46. Wang Z., Bovik A.: A Universal Image Quality Index. IEEE Trans. Signal Process. Lett. 9, 81–84 March (2002)

    Article  Google Scholar 

  47. Wang, Z., Sheikh, H.R., Bovik, A.C.: No-reference Perceptual Quality Assessment of JPEG Compressed Images. In: Proceedings of the IEEE International Conference on Image Processing, vol. 1, pp. 477–480 (2002)

  48. Rouchka, E.C.: Lecture 12: Microarray Image Analysis. Available at: http://kbrin.a-bldg.louisville.edu/CECS694/Lecture12.ppt, April (2004)

  49. Chen G.Y., Bui T.D.: Multiwavelets denoising using neighboring coefficients. IEEE Signal process. lett. 10(7), 211–214 (2003)

    Article  Google Scholar 

  50. Hsung, T.C., Lun, D.P.K.: Optimal thresholds for multiwavelet shrinkage. Elect. Lett. 39(5), 6, 473–474 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Zifan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zifan, A., Moradi, M.H. & Gharibzadeh, S. Microarray image enhancement by denoising using decimated and undecimated multiwavelet transforms. SIViP 4, 177–185 (2010). https://doi.org/10.1007/s11760-009-0109-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-009-0109-4

Keywords

Navigation