Skip to main content
Log in

The effect of microarray image compression on expression-based classification

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Current gene-expression microarrays carry enormous amounts of information. Compression is necessary for efficient distribution and storage. This paper examines JPEG2000 compression of cDNA microarray images and addresses the accuracy of classification and feature selection based on decompressed images. Among other options, we choose JPEG2000 because it is the latest international standard for image compression and offers lossy-to-lossless compression while achieving high lossless compression ratios on microarray images. The performance of JPEG2000 has been tested on three real data sets at different compression ratios, ranging from lossless to 45:1. The effects of JPEG2000 compression/decompression on differential expression detection and phenotype classification have been examined. There is less than a 4% change in differential detection at compression rates as high as 20:1, with detection accuracy suffering less than 2% for moderate to high intensity genes, and there is no significant effect on classification at rates as high as 35:1. The supplementary material is available at http://gsp.tamu.edu/web2/Compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dougherty E.R., Datta A.: Genomic signal processing: diagnosis and therapy. IEEE Signal Process. Mag. 22, 107–112 (2005)

    Article  Google Scholar 

  2. Dougherty E.R., Datta A., Sima C.: Research issues in genomic signal processing. IEEE Signal Process. Mag. 22, 46–68 (2005)

    Article  Google Scholar 

  3. Taubman D., Marcellin M.: JPEG2000: Image Compression Fundamentals, Standards, and Practice. Kluwer, Dordrecht (2001)

    Google Scholar 

  4. ISO/IEC 14495-1, ITU Recommendation T.87, Information technology—Lossless and near-lossless compression of continuous-tone images (1999)

  5. Jornsten R., Wang W., Yu B., Ramchandran K.: Microarray image compression: Sloco and the effect of information loss. Signal Process. 83, 859–869 (2003)

    Article  MATH  Google Scholar 

  6. Hua, J., Liu, Z., Xiong, Z., Wu, Q., Castleman, K.: Microarray basica: Background adjustment, segmentation, image compression and analysis of microarray images. EURASIP J. Appl. Signal Process. 92–107 (2004)

  7. Zhao H., Langerød A., Ji Y., Nowels K.W., Nesland J.M., Tibshirani R., Bukholm I.K., Kåresen R., Botstein D., Børresen-Dale A., Jeffrey S.S.: Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol. Biol. Cell 15, 2523–2536 (2004)

    Article  Google Scholar 

  8. Tibshirani R., Hastie T., Narasimhan B., Chu G.: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. USA 99, 6567–6572 (2002)

    Article  Google Scholar 

  9. Lacayo N.J., Meshinchi S., Kinnunen P., Yu R., Wang Y., Stuber C.M., Douglas L., Wahab R., Becton D.L., Weinstein H., Chang M.N., Willman C.L., Radich J.P., Tibshirani R., Ravindranath Y., Sikic B.I., Dahl G.V.: Gene expression profiles at diagnosis in de novo childhood aml patients identify flt3 mutations with good clinical outcomes. Blood 104, 2646–2654 (2004)

    Article  Google Scholar 

  10. Ziv J., Lempel A.: Coding theorems for individual sequences via variable-rate coding. IEEE Trans. Inform. Theory 24, 530–536 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Welsh T.: A technique for high-performance data compression. IEEE Comput. Mag. 17, 8–19 (1984)

    Google Scholar 

  12. Weinberger M., Seroussi G., Sapiro G.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Process. 9, 1309–1324 (2000)

    Article  Google Scholar 

  13. Strang G., Nguyen T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, New York (1996)

    Google Scholar 

  14. Vetterli M., Kovačević J.: Wavelets and Subband Coding. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  15. Shapiro J.: Embedded image coding using zero trees of wavelet coefficients. IEEE Trans. Signal Process. 41, 3445–3463 (1993)

    Article  MATH  Google Scholar 

  16. Said A., Pearlman W.: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996)

    Article  Google Scholar 

  17. Taubman D.: High performance scalable image compression with EBCOT. IEEE Trans. Image Process. 9, 1158–1170 (2000)

    Article  Google Scholar 

  18. Chen Y., Dougherty E., Bittner M.: Ratio-based decisions and the quantitative analysis of cDNA microarray images. J. Biomed. Opt. 2, 364–374 (1997)

    Article  Google Scholar 

  19. Troyanskaya O., Cantor M., Sherlock G. et al.: Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525 (2001)

    Article  Google Scholar 

  20. Pudil P., Novovičová J., Kittler J.: Floating search methods in feature selection. Pattern Recognit. Lett. 15, 1119–1125 (1994)

    Article  Google Scholar 

  21. Tibshirani R., Hastie T., Narashimhan B., Chu G.: Class prediction by nearest shrunken centroids with applications to dna microarrays. Stat. Sci. 18, 104–117 (2003)

    Article  MATH  Google Scholar 

  22. Ioannidis J.P.: Microarrays and molecular research: noise discovery?. Lancet 365, 454–455 (2005)

    Google Scholar 

  23. Dougherty E.R., Brun M.: On the number of close-to-optimal feature sets. Cancer Inform. 2, 189–196 (2006)

    Google Scholar 

  24. Ein-Dor L., Kela I., Getz G., Givol D., Domany E.: Outcome signature genes in breast cancer: is there a unique set?. Bioinformatics 21, 171–178 (2005)

    Article  Google Scholar 

  25. Grate, L.R.: Many accurate small-discriminatory feature subsets exist in microarray transcript data: biomarker discovery. BMC Bioinformatics, vol. 6, 2005

  26. Sima C., Attoor S., Braga-Neto U., Lowey J., Suh E., Dougherty E.R.: Impact of Error estimation on feature-selection algorithms. Pattern Recognit. 38, 2472–2482 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward R. Dougherty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Q., Hua, J., Xiong, Z. et al. The effect of microarray image compression on expression-based classification. SIViP 3, 53–61 (2009). https://doi.org/10.1007/s11760-008-0059-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-008-0059-2

Keywords

Navigation