Skip to main content
Log in

Turbo equalization of serially concatenated turbo codes using a predictive DFE-based receiver

  • Original paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper investigates the performance of various “turbo” receivers for serially concatenated turbo codes transmitted through intersymbol interference (ISI) channels. Both the inner and outer codes are assumed to be recursive systematic convolutional (RSC) codes. The optimum turbo receiver consists of an (inner) channel maximum a posteriori (MAP) decoder and a MAP decoder for the outer code. The channel MAP decoder operates on a “supertrellis” which incorporates the channel trellis and the trellis for the inner error-correcting code. This is referred to as the MAP receiver employing a SuperTrellis (STMAP). Since the complexity of the supertrellis in the STMAP receiver increases exponentially with the channel length, we propose a simpler but suboptimal receiver that employs the predictive decision feedback equalizer (PDFE). The key idea in this paper is to have the feedforward part of the PDFE outside the iterative loop and incorporate only the feedback part inside the loop. We refer to this receiver as the PDFE-STMAP. The complexity of the supertrellis in the PDFE-STMAP receiver depends on the inner code and the length of the feedback part. Investigations with Proakis B, Proakis C (both channels have spectral nulls with all zeros on the unit circle and hence cannot be converted to a minimum phase channel) and a minimum phase channel reveal that at most two feedback taps are sufficient to get the best performance. A reduced-state STMAP (RS-STMAP) receiver is also derived which employs a smaller supertrellis at the cost of performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lucky R.W. (1965). Automatic equalization for digital communication. Bell Syst. Tech. J. 44(4): 547–588

    MathSciNet  Google Scholar 

  2. Jr G.D.F. (1972). Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Trans. Info. Theory 18(3): 363–378

    Article  Google Scholar 

  3. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and decoding: turbo codes. In: Proceedings IEEE International Conference on Communications, pp. 1064–1070. Geneva, Switzerland (1993)

  4. Berrou C. and Glavieux A. (1996). Near optimum error correcting coding and decoding—Turbo codes. IEEE Trans. Commun. 44(10): 1261–1271

    Article  Google Scholar 

  5. Hagenauer, J.: The turbo principle: tutorial introduction and state of the art. In: Proceedings International Symposium on Turbo Codes, pp. 1–11. Brest, France (1997)

  6. Heegard C. and Wicker S.B. (1999). Turbo Coding, 1st edn. Kluwer, Dordrecht

    MATH  Google Scholar 

  7. Vucetic B. and Yuan J. (2000). Turbo Codes: Principles and Applications, 1st edn. Kluwer, Dordrecht

    Google Scholar 

  8. Poor H. (1994). An Introduction to Signal Detection and Estimation. Springer, New York

    MATH  Google Scholar 

  9. Tüchler M., Koetter R. and Singer A.C. (2002). Turbo equalization: principles and new results. IEEE Trans. Commun. 50(5): 754–767

    Article  Google Scholar 

  10. Tüchler M., Singer A.C. and Koetter R. (2002). Minimum mean squared error equalization using a priori information. IEEE Trans. Sig Proc 50(3): 673–683

    Article  Google Scholar 

  11. Koetter R., Singer A.C. and Tüchler M. (2004). Turbo equalization. IEEE Sig Proc Mag 21(1): 67–80

    Article  Google Scholar 

  12. Glavieux, A., Laot, C., Labat, J.: Turbo equalization over a frequency selective channel. In: Proceedings International Symposium on Turbo Codes, pp. 96–102. Brest, France (1997)

  13. Roumy, A., Fijalkow, I., Pirez, D.: Joint equalization and decoding: why choose the iterative solution. In: Proceedings of the IEEE VTS 50th Vehicular Technology Conference—Fall, Amsterdam, The Netherlands, 19–22 Sept. pp. 2989–2993 (1999)

  14. Raphaeli, D., Saguy, A.: Linear equalizers for Turbo equalization: a new optimization criterion for determining the equalizer taps. In: Proceedings International Symposium on Turbo Codes, pp. 371–374. Brest, France (2000)

  15. Honig, M., Tripathi, V., Sun, Y.: Adaptive decision feedback turbo equalization. In: Proceedings IEEE International Symposium on Information Theory, p. 413. Lausanne, Switzerland (2002)

  16. Vogelbruch F. and Haar S. (2005). Low complexity Turbo equalization based on soft feedback interference cancellation. IEEE Commun. Lett. 9(7): 586–588

    Article  Google Scholar 

  17. Jiang S., Ping L., Sun H. and Leung C.S. (2004). Modified LMMSE Turbo equalization. IEEE Commun. Lett. 8(3): 174–176

    Article  Google Scholar 

  18. Laot C., Bidan R.L. and Leroux D. (2005). Low complexity MMSE Turbo equalization: a possible solution for EDGE. IEEE Trans. Wireless Commun. 4(3): 673–683

    Article  Google Scholar 

  19. Anastasopoulos, A., Chugg, K.: Iterative equalization/decoding for TCM for frequency-selective fading channels. In: Conf. Rec. 31st Asilomar Conf. on Signals, Systems and Comp., Monteray, CA, USA, pp 177–181 (1997)

  20. Berthet, A., Visoz, R., Tortelier, P.: Sub-optimal Turbo detection for coded 8-PSK signals over ISI channels with application to EDGE advanced mobile system. In: Proceedings of the 11th IEEE Intl. Symp. on Personal, Indoor and Mobile Radio Commun., London, UK, 18–21, pp. 151–157 (2000)

  21. Laot C., Glavieux A. and Labat J. (2001). Turbo equalization: adaptive equalization and channel decoding jointly optimized. IEEE J. Select Areas Commun. 19(9): 1744–1752

    Article  Google Scholar 

  22. Dejonghe, A., Vandendorpe, L.: Turbo equalization for multilevel modulation: an efficient low complexity scheme. In: Proceedings IEEE Intrenational Conference on Communication, New York, USA, 28th April – 2nd May, pp. 1863–1867 (2002)

  23. Kansanen K., Schneider C., Matsumoto T. and Thomä R. (2005). Multilevel-Coded QAM with MIMO Turbo-Equalization in Broadband Single-Carrier Signalling. IEEE Trans. Veh. Technol. 54(3): 954–966

    Article  Google Scholar 

  24. Yeap B.L., Liew T.H., Hámorský J. and Hanzo L. (2002). Comparitive Study of Turbo Equalization Schemes Using Convolutional, Convolutional Turbo and Block-Turbo Codes. IEEE Trans. Wireless Commun. 1(2): 266–273

    Article  Google Scholar 

  25. Mai, H., Burr, A.G., Hirst, S.: Iterative channel estimation for Turbo equalization. In: Proceedings of the 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communication, Barcelona, Spain, 5–8 Sept., pp. 1327–1331 (2004)

  26. Otnes R. and Tüchler M. (2004). Iterative Channel Estimation for Turbo Equalization of Time-Varying Frequency-Selective Channels. IEEE Trans. Wireless Commun. 3(6): 1918–1923

    Article  Google Scholar 

  27. Song S., Singer A.C. and Sung K.-M. (2004). Soft Input Channel Estimation for Turbo Equalization. IEEE Trans. Sig. Proc. 52(10): 2885–2894

    Article  Google Scholar 

  28. Wu Z.-N. and Cioffi J.M. (2001). Low-Complexity Iterative Decoding with Decision-Aided Equalization for Magnetic Recording Channels. IEEE J. Select Areas Commun. 19(4): 699–708

    Article  Google Scholar 

  29. Dholakia A., Eleftheriou E., Mittelholzer T. and Fossorier M.P.C. (2004). Capacity Approaching Codes: Can they be Applied to the Magnetic Recording Channel?. IEEE Comm. Mag. 42(2): 122–130

    Article  Google Scholar 

  30. Wang X. and Poor H. (1999). Iterative (Turbo) Soft Interference Cancellation and Decoding for Coded CDMA. IEEE Trans. Commun. 47(7): 1046–1061

    Article  Google Scholar 

  31. Dejonghe A. and Vandendorpe L. (2004). Bit-Interleaved Turbo Equalization over Static Frequency-Selective Channels: Constellation Mapping Impact. IEEE Trans. Commun. 52(12): 2061–2065

    Article  Google Scholar 

  32. Tüchler M. (2004). Design of Serially Concatenated Systems Depending on the Block Length. IEEE Trans. Commun. 52(2): 209–218

    Article  Google Scholar 

  33. Moon J. and Rad F.R. (2005). Turbo Equalization via Constrained Delay APP Estimation with Decision Feedback. IEEE Trans. Commun. 53(12): 2102–2113

    Article  Google Scholar 

  34. Kavcic, A., Moura, J.F.: Signal Dependant Correlation Sensitive Branch Metrics for Viterbi-like Sequence Detectors. Proc. Intl. Conf. Commun. 657–661 (1998)

  35. Coker J.D., Eleftheriou E., Galbraith R.L. and Hirt W. (1998). Noise Predictive Maximum Likelihood (NPML) Detection. IEEE Trans. Magn. 34(1): 110–117

    Article  Google Scholar 

  36. Kim Y. and Moon J. (1999). Noise Predictive Maximum Likelihood Method Combined with Infinite Impulse Response Equalization. IEEE Trans. Magn. 35(6): 4538–4543

    Article  Google Scholar 

  37. Cideciyan R.D., Coker J.D., Eleftheriou E. and Galbraith R.L. (2001). Noise Predictive Maximum Likelihood Detection Combined with Parity-Based Post Processing. IEEE Trans. Magn. 37(2): 714–720

    Article  Google Scholar 

  38. Vasudevan, K.: Detection of Signals in Correlated Interference Using a Predictive VA. In: Proceedings of the IEEE International Conference on Communication Systems, Singapore, pp. 529–533 (2002)

  39. Vasudevan K. (2004). Detection of signals in correlated interference using a predictive VA. Sig. Process J. 84(12): 2271–2286

    Article  Google Scholar 

  40. Vasudevan, K.: Optimum Predictive Iterative Decoding of Turbo Codes in Coloured Gaussian Noise. In: Proceedings of the Fourth IASTED International Multi Conference on Wireless and Optical Communication, Banff, Canada, July 8–10, 2004, pp. 306– 311

  41. Vasudevan, K.: Detection of Turbo coded signals transmitted through ISI channels using the predictive iterative decoder. In: Proceedings of the seventh IEEE International Conference on Signal Proceedings and Communication, 11–14 Dec 2004, Bangalore, India, pp. 223–227 (2004)

  42. Raphaeli, D., Zarai, Y.: Combined Turbo Equalization and Turbo Decoding. In: Proceedings IEEE Global Telecommunicatin Conference, Phoenix, Arizona, USA, 3–8 pp. 639–643 (1997)

  43. Toegel, M., Pusch, W., Weinrichter, H.: Combined Serially Concatenated Codes and Turbo-Equalization. In: Proceedings International Symposium on Turbo Codes, Brest, France, Sept. pp. 375–378 (2000)

  44. Eyuboğlu M.V. and Qureshi S.U.H. (1989). Reduced-State Sequence Estimation for Coded Modulation on Intersymbol Interference Channels. IEEE J. Select Areas Commun. 7(6): 989–995

    Article  Google Scholar 

  45. Chevillat P.R. and Eleftheriou E. (1989). Decoding of Trellis-Encoded Signals in the Presence of Intersymbol Interference and Noise. IEEE Trans. Commun. 37(7): 669–676

    Article  Google Scholar 

  46. Vishwanath, S., Mansour, M., Bahai, A.: Complexity Based Design for Iterative Joint Equalization and Decoding. In: Proceedings of the IEEE VTS 55th Vehicular Technology Conference – Spring, Birmingham, Alabama, May, pp. 1699–1704 (2002)

  47. Tungsrisaguan E. and Rajatheva R.M.A.P. (2002). Turbo Equalization with Sequential Sequence Estimation Over Multipath Fading Channels. IEEE Commun. Lett. 6(3): 93–95

    Article  Google Scholar 

  48. Berthet A.O., ünal B.S. and Visoz R. (2001). Iterative decoding of convolutionally encoded signals over multipath Rayleigh fading channels. IEEE J. Select Areas Commun. 19(9): 1729–1743

    Article  Google Scholar 

  49. ten Brink S. (1999). Convergence of Iterative Decoding. Electron. Lett. 35(13): 1117–1118

    Google Scholar 

  50. ten Brink S. (1999). Convergence of Iterative Decoding. Electron. Lett. 35(10): 806–808

    Article  Google Scholar 

  51. ten Brink S. (2001). Convergence Behaviour of Iteratively Decoded Parallel Concatenated Codes. IEEE Trans. Commun. 49(10): 1727–1737

    Article  MATH  Google Scholar 

  52. Douillard C., Jézéquel M. and Berrou C. (1995). Iterative Correction of Intersymbol Interference: Turbo-Equalization. Eur. Trans. Telecomm. 6(5): 507–511

    Article  Google Scholar 

  53. Li F., Vucetic B. and Sato Y. (1995). Optimum Soft-Output Detection for Channels with Intersymbol Interference. IEEE Trans. Info. Theory. 41(3): 704–713

    Article  MATH  Google Scholar 

  54. Hanzo L., Liew T.H. and Yeap B.L. (2002). Turbo Coding, Turbo Equalization and Space-Time Coding for Transmission over Fading Channels. Wiley, New York

    Google Scholar 

  55. Narayanan K. (2001). Effect of Precoding on the Convergence of Turbo Equalization for Partial Response Channels. IEEE J. Select Areas Commun. 19(4): 686–698

    Article  MathSciNet  Google Scholar 

  56. Lee I. (2001). The Effect of a Precoder on Serially Concatenated Coding Systems with an ISI Channel. IEEE Trans. Commun. 49(7): 1168–1175

    Article  MATH  Google Scholar 

  57. Vasudevan K., Giridhar K. and Ramamurthi B. (2001). An Efficient Suboptimum Detector Based on Linear Prediction in Rayleigh Flat-Fading Channels. Sig. Process J. Elsev. Sci. 81(4): 819–828

    MATH  Google Scholar 

  58. Bahl L., Cocke J., Jelinek F. and Raviv J. (1974). Optimal Decoding ofLinear Codes for Minimizing Symbol Error Rate. IEEE Trans. Info. Theory 20(2): 284–287

    Article  MATH  MathSciNet  Google Scholar 

  59. Vasudevan, K.: Digital Communications and Signal Processing. Universities Press (India), Hyderabad. ISBN 81 7371 575 4. http://www.universitiespress.com, 2007

  60. Proakis, J.G., Manolakis, D.G.: Digital Signal Processing: Principles, Algorithms and Applications, 2nd ed. Maxwell MacMillan (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vasudevan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudevan, K. Turbo equalization of serially concatenated turbo codes using a predictive DFE-based receiver. SIViP 1, 239–252 (2007). https://doi.org/10.1007/s11760-007-0017-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-007-0017-4

Keywords

Navigation