Skip to main content
Log in

Isolation, screening and molecular characterization of phytase-producing microorganisms to discover the novel phytase

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Due to a lack of endogenous phytase enzymes in monogastric animals, exogenous phytases are employed in the animal feed industry. Phytases catalyze the hydrolysis of phytic acid and its salts (phytate) from plant-based animal feed, to supply phosphorus to monogastric animals and decrease the anti-nutritional effects of phytic acid. This study aimed to discover the new phytase with optimum activity at acidic pH range and 40 °C for the poultry feed industry. In the current investigation, phytase-producing microorganisms were isolated from different sources and locations, demonstrating that ten of the isolates are attributed to bacterial strains, and one of which is a yeast strain. Phytase-producing microorganisms were screened based on qualitative and quantitative assays. Additionally, molecular characterization was carried out based on sequencing of amplified 16S rRNA and nuclear ribosomal transcribed spacer (ITS) genes. Then, degenerate primers were designed to amplify the histidine acid phosphatase gene from potential isolates to find the new natural variant of phytase. Quantitative assays were carried out to find pH and temperature profiles at pH ranges between 2 and 7, with a 0.5 interval, and a range of temperatures from 30 °C to 90 °C, with a 10 °C interval. The results from crude enzymes demonstrated the extracellular phytase activities of isolates with different optimum pH and temperatures ranging from 4 to 6.5 and 40 °C–60 °C, respectively. Moreover, the range of optimum phytase activities of isolates was between 194.21 mU/mL and 381 mU/mL. Sequencing analysis of 16S rDNA and nuclear ribosomal transcribed spacer (ITS) genes revealed that six out of the eleven isolates are attributed to the Acinetobacter genus, two of which are affiliated with Enterobacter genus. One is affiliated with the Pseudomonas genus; one of them is affiliated with Escherichia, and another is affiliated with Saccharomyces. Finally, a new native histidine acid phosphatase gene (PhySc) was detected and amplified from the SPA isolate by designing degenerate primers. This showed a 99.50% identity with PHO5 from Saccharomyces cerevisiae YJM993 with an accession number of CP004601.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data associated with the work are mentioned in the manuscript.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

NGN and TCL conceived the research, analysed the data and wrote the manuscript, and all the co-authors (RNZRA, NMY, SNO and FMS) contributed to conceptualization, experimental work, data collection and manuscript preparation.

Corresponding author

Correspondence to Thean Chor Leow.

Ethics declarations

Consent for publication

All the authors read and are aware of publishing of the manuscript.

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezhad, N.G., Rahman, R.N.Z.R.A., Normi, Y.M. et al. Isolation, screening and molecular characterization of phytase-producing microorganisms to discover the novel phytase. Biologia 78, 2527–2537 (2023). https://doi.org/10.1007/s11756-023-01391-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11756-023-01391-w

Keywords

Navigation