Skip to main content

Advertisement

Log in

First record of the hydrozoan Podocorynoides minima in the Romanian Black Sea waters

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

A Correction to this article was published on 13 April 2022

This article has been updated

Abstract

The paper reports the first finding of hydromedusa of Podocorynoides minima (Trinci, 1903) in the plankton samples collected in the summer of 2020 in nearshore, coastal and offshore waters of the Romanian Black Sea shelf. Distribution and abundances of the new incoming species are presented. Different hypotheses on introduction pathways and factors that might ensure or hinder its successful spreading in the Black Sea are discussed. The results point out a climate-driven opportunity and a potential free ecological niche for the species settlement, but also highlight the impediments due to competition pressure. While the polyp stage has not yet been found, this evinces once again the paradigm of this species regarding the cryptic existence of its benthic phase confirmed by the worldwide studies. It also stresses the importance of detection of medusa of the new species even in the absence of the polyp, as a sign of more profound ecological changes that might occur in the Black Sea in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  • Alexandrov B, Arashkevich E, Gubanova A, Korshenko A (2014) Black Sea Monitoring Guidelines Mesozooplankton. Improving Environmental Monitoring in the Black Sea – EMBLAS, EU/UNDP Project, pp 1–34

    Google Scholar 

  • Arai MN (1997) A functional biology of Scyphozoa. Springer, Dordrecht, pp. 1–295.https://doi.org/10.1007/978-94-009-1497-1

    Book  Google Scholar 

  • Ašmantas Å, Venslauskas M (2002) The study of biorhythms in marine colonial hydroids. Acta Zool Litu 12:70–75. https://doi.org/10.1080/13921657.2002.10512489

    Article  Google Scholar 

  • Bat L, Satilmis H, Birinci-Ozdemir Z, Sahin F, Üstün F (2009) Distribution and population dynamics of Aurelia aurita (Cnidaria; Scyphozoa) in the southern Black Sea. North-West J Zool 5:225–241

    Google Scholar 

  • Băcescu M, Müller G, Gomoiu M-T (1971) Cercetări de ecologie bentală în Marea Neagră: analiza cantitativă, calitativă şi comparată a faunei bentale pontice. In: Academia Republicii Socialiste Romania (ed) Ecologie Marină 4, Bucuresti, pp 318–357

  • Begun T, Teacă A, Muresan M, Vasiliu D, Secrieru D, Pavel B (2018) Environmental assessment of two MPAs from the Romanian Black Sea Coast. J Environ Prot Ecol 19(2):573–582

    CAS  Google Scholar 

  • Benovic A, Lucic D (1996) Comparison of hydromedusae findings in the Northern and Southern Adriatic Sea. Sci Mar 60(1):129–135

    Google Scholar 

  • Betti F, Bo M, Enrichetti F, Manuele M, Cattaneo-Vietti R, Bavestrello G (2019) Massive strandings of Velella velella (Hydrozoa: Anthoathecata: Porpitidae) in the Ligurian Sea (North-western Mediterranean Sea). Eur Zool J 86(1):343–353. https://doi.org/10.1080/24750263.2019.1671506

    Article  Google Scholar 

  • Boero F (1984) The ecology of marine hydroids and effects of environmental factors: A review. Mar Ecol 5:93–118. https://doi.org/10.1111/j.1439-0485.1984.tb00310.x

    Article  Google Scholar 

  • Boero F, Bouillon J (1993) Zoogeography and life cycle patterns of Mediterranean hydromedusae (Cnidaria). Biol J Linn Soc 48:239–266

    Article  Google Scholar 

  • Boero F, Bouillon J, Piraino S, Schmid V (1997) Diversity of hydrozoan life cycles: ecological implications and evolutionary patterns. In: Boero F, Bouillon J, Gravili C, Miglietta MP, Parsons T, Piraino S (2008) Gelatinous plankton: Irregularities rule the world (sometimes). Mar Ecol Prog Ser 356:299–310. https://doi.org/10.3354/meps07368

  • Boero F, Bucci C, Colucci A, Gravili C, Stabili L (2007) Obelia (Cnidaria, Hydrozoa, Campanulariidae): a microphagous, filter-feeding medusa. Mar Ecol 28:178–183. https://doi.org/10.1111/j.1439-0485.2007.00164.x

    Article  Google Scholar 

  • Boicenco L, Lazăr L, Bișinicu E, Vlas O, Harcotă G, Pantea E, Tabarcea C, Timofte F (2019) Ecological status of Romanian Black Sea waters according to the planktonic communities. Cercetări Marine - Recherches Marines 49(1):34–56. http://www.marine-research-journal.org/index.php/cmrm/article/view/141. Accessed 26 October 2021

  • Bouillon J, Barnett TJ (1999) The marine fauna of New Zealand. Hydromedusae (Cnidaria: Hydrozoa)/. Wellington [N.Z.]. National Institute of Water and Atmospheric Research, pp 1–136

  • Bouillon J, Medel MD, Pagès F, Gili JM, Boero F, Gravili C (2004) Fauna of the Mediterranean Hydrozoa. Sci Mar 68(Suppl 2):5–438. https://doi.org/10.3989/scimar.2004.68s25

    Article  Google Scholar 

  • Bosh-Belmar M,Milisenda G, Girons A, Taurisano V, Accoroni S, Totti C, Piraino S, Fuentes V (2017) Consequences of stinging plankton blooms on Finfish mariculture in the Mediterranean Sea. Front Mar Sci 4:1–10. https://doi.org/10.3389/fmars.2017.00240

    Article  Google Scholar 

  • Brinckmann-Voss A (1987) Seasonal distribution of hydromedusae (Cnidaria, Hydrozoa) from the Gulf of Naples and vicinity, with observations on sexual and asexual reproduction in some species. In: Bouillon J, Boero F, Cicogna F, Cornelius PFS (eds) Modern Trends in the Systematics, Ecology, and Evolution of Hydroids and Hydromedusae. Clarendon Press, Oxford, pp 133–141

    Google Scholar 

  • Castellani C, Irigoien X, Harris R, Lampitt R (2005) Feeding and egg production of Oithona similis in the North Atlantic. Mar Ecol Progr Ser 288:173–182. https://doi.org/10.3354/meps288173

  • Cerrano C, Bavestrello G, Puce S, Sarà M (1998) Biological cycle of Podocoryna exigua (Cnidaria: Hydrozoa) from a sandy bottom of the Ligurian Sea. J Mar Biol Assoc UK 78(4):1101–1111. https://doi.org/10.1017/S0025315400044350

  • Chaplygina S, Dautova T (2005) Finding of the Hydromedusa Hydractinia minima (Trinci, 1903) (Cnidaria: Hydrozoa: Hydractiniidae) in Peter the Great Bay, Sea of Japan. Russ J Mar Biol 31:141–145. https://doi.org/10.1007/s11179-005-0058-x

    Article  Google Scholar 

  • CMEMS (2020a) Copernicus Marine Services - Black Sea Physics Analysis and Forecast. https://doi.org/10.25423/CMCC/BLKSEA_ANALYSIS_FORECAST_PHYS_007_001_EAS3

  • CMEMS (2020b) Copernicus Marine Services - Black Sea Biogeochemistry Analysis and Forecast. https://doi.org/10.25423/CMCC/BLKSEA_ANALYSIS_FORECAST_BIO_007_010_BAMHBI

  • D’Ambrosio M, Molinero JC, Azeiteiro U, Pardal M, Primo A, Nyitrai D, Marques S (2016) Interannual abundance changes of gelatinous carnivore zooplankton unveil climate-driven hydrographic variations in the Iberian Peninsula, Portugal. Mar Environ Res 120:103–110. https://doi.org/10.1016/j.marenvres.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  • Gavrilova NA (2005) New for the Black Sea tintinnids species. Ekologiya Morya 69:5–11 (in Russian with English summary)

    Google Scholar 

  • Gavrilova N (2010) Microzooplankton. In: Matishova GG, Boltacheva AR (eds) The introducers in the biodiversity and productivity of the Sea of Azov and the Black Sea. SSC RAS Publishing, Rostov-on-Don, pp 63–69

    Google Scholar 

  • Gomoiu M-T, Skolka M (1996) Changements récents dans la biodiversité de la Mer Noire dûs aux immigrants. Geo Eco Mar RCGGM 1:34–47

    Google Scholar 

  • González HE, Smetacek V (1994) The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material. Mar Ecol Progr Ser 113:233–246. https://doi.org/10.3354/meps113233

    Article  Google Scholar 

  • Graham WM, Kroutil RM (2001) Size-based prey selectivity and dietary shifts in the jellyfish, Aurelia aurita. J Plankton Res 23(1):67–74. https://doi.org/10.1093/plankt/23.1.67

    Article  Google Scholar 

  • Guerrero E, Gili JM, Grinyó J, Raya V, Sabatés A (2018) Long-term changes in the planktonic cnidarian community in a mesoscale area of the NW Mediterranean. PLoS ONE 13(5):e0196431. https://doi.org/10.1371/journal.pone.0196431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunduz M, Özsoy E, Hordoir R (2020) A model of Black Sea circulation with strait exchange (2008–2018). Geosci Model Dev 13:121–138. https://doi.org/10.5194/gmd-13-121-2020

    Article  Google Scholar 

  • Guo DH, Huang JQ, Li SJ, Xu ZZ (2008) Ecological studies on zooplankton in Beibu Gulf during summer and winter I. Species composition and abundance distribution. In: Hu JY, Yang SY (eds) Symposium on Oceanography of the Beibu Gulf, China Ocean Press, Beijing, pp 222–236

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Isinibilir M, Yilmaz IN, Piraino S (2010) New contributions to the jellyfish fauna of the Marmara Sea. Ital J Zool 77:179–185. https://doi.org/10.1080/11250000902895766

    Article  Google Scholar 

  • Isinibilir M, Martell L, Topçu NE, Yilmaz IN, Piraino S (2015) First inventory of the shallow-water benthic hydrozoan assemblages of Gökçeada Island (northern Aegean Sea). Ital J Zool 82(2):281–290. https://doi.org/10.1080/11250003.2014.977970

    Article  CAS  Google Scholar 

  • Jiang S, Chen JK (1994) Geographical distribution of Hydromedusae, Siphonophore and Ctenophora in Bohai Sea and Yellow Sea. Bull Mar Sci 13(3):17–23

    Google Scholar 

  • Kramp PL (1961) Synopsis of the medusae of the world. J Mar Biol Assoc UK 40:7–382. https://doi.org/10.1017/S0025315400007347

    Article  Google Scholar 

  • Kühl H (1962) Die Hydromedusen der Elbmündung. In: Schuchert P (2007) The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Filifera Part 2. Rev Suisse Zool 114:195–396. https://doi.org/10.5962/bhl.part.80395

    Article  Google Scholar 

  • Manea V (1959) Nota preliminara asupra hidroidelor de pe coastele rominesti ale Mării Negre. Stud cercet biol. Ser Biol Anim 2:149–158

    Google Scholar 

  • Manea V (1961) Neue Hydroiden aus den rumänischen Gewässern des Schwarzen Meeres. Rev Roum Biol 6:213–221

    Google Scholar 

  • Manea V (1967) Bougainvillia ramosa (van Beneden) ein neuer Hydroid aus den rumänischen Gewässer des Schwarzen Meeres. Sonderdruck aus Trav Mus Natl Hist Nat Grigore Antipa (Bucharest) 7:47–50

  • Manea V (1968) Contributions a l`etude des Hidraires de la Mer Noire. Trav Mus Natl Hist Nat Grigore Antipa (Bucharest) 8:279–284

  • Manea V (1971) Hidroide marine identificate in fitocenoza Cystoseira la nord de Constanta. Lucrări ştiinţifice, ştiinte naturale, Inst Ped Vol 1, pp 25–30

  • Manea V (1972) Contributii la studiul Hidroidelor (Coelenterata) din Marea Neagra. Stud Cercet Biol Ser Zool 24(5):409–417

    Google Scholar 

  • Manea V (1976) Cercetari asupra hidrozoarelor din Marea Neagra, litoralul romanesc. Studii si comunicari, pp 43–54

  • Manea V (1977–1979) Hidroide (Coelenterata) noi in apele romanesti ale Marii Negre. Studii si comunicari, pp 7–16

  • Margolin A, Gonnelli M, Hansell D, Santinelli C (2018) Black Sea dissolved organic matter dynamics: Insights from optical analyses: Black Sea dissolved organic matter dynamics. Limnol Oceanogr 63:1425–1443. https://doi.org/10.1002/lno.10791

    Article  CAS  Google Scholar 

  • Mayer AG (1910) Medusae of the world. Hydromedusae, Vols. I & II, Scyphomedusae, Vol. III. Carnegie Institution, Washington, pp 1–735, plates 1–76

  • McFadden C (1986) Laboratory evidence for a size refuge in competitive interactions between the hydroids Hydractinia echinata (Flemming) and Podocoryne carnea (Sars). Biol Bull 171:161–174. https://doi.org/10.2307/1541914

    Article  Google Scholar 

  • Miglietta MP, Schuchert P, Cunningham CW (2009) Reconciling genealogical and morphological species in a worldwide study of the Family Hydractiniidae (Cnidaria, Hydrozoa). Zool Scr 38(4):403–430. https://doi.org/10.1111/j.1463-6409.2008.00376.x

    Article  Google Scholar 

  • Miglietta MP, Cunningham C (2012) Evolution of life cycle, colony morphology, and host-specificity in the Family Hydractiniidae (Hydrozoa, Cnidaria). Evol Int J Org Evol 66:3876–3901. https://doi.org/10.1111/j.1558-5646.2012.01717.x

    Article  Google Scholar 

  • Muha TP, Teodósio MA, Ben-Hamadou R (2017) Impact assessment of non-indigenous jellyfish species on the estuarine community dynamic: a model of medusa phase. Estuar Coast Shelf Sci 187:249–259. https://doi.org/10.1016/j.ecss.2016.10.04

    Article  Google Scholar 

  • Nagata RM, Júnior NM, Haddad MA (2014) Faunistic survey of Hydromedusae (Cnidaria, Medusozoa) from the coast of Paraná State, Southern Brazil. Zootaxa 3768(3):291–326. https://doi.org/10.11646/zootaxa.3768.3.3

    Article  PubMed  Google Scholar 

  • Nakamura Y, Turner JT (1997) Predation and respiration by the small cyclopoid copepod Oithona similis: How important is feeding on ciliates and heterotrophic flagellates? J Plankton Res 19:1275–1288. https://doi.org/10.1093/plankt/19.9.1275

    Article  Google Scholar 

  • Naumov DV (l968) Tip Coelenterata. In: Mordukhay-Boltovsky FD (ed) Opredeliteli Fauny Chernogo i Azovskogo Morej 1. Akad Nauk USSR, INBYUM. Izdat Naukova Dumka, Kiev, pp 1-437

  • NOAA National Centers for Environmental Information, State of the Climate: Global Climate Report for September 2020, published online October 2020. Accessed 17 May 2021. https://www.ncdc.noaa.gov/sotc/global/202009/supplemental/page-4

  • Öztürk B, Öztürk AA (1996) On the biology of the Turkish straits system. Bull Mus Oceanogr Monaco 17:205–221

    Google Scholar 

  • Pagès F, González HE, González SR (1996) Diet of the gelatinous zooplankton in Hardangerfjord (Norway) and potential predatory impact by Aglantha digitale (Trachymedusae). Mar Ecol Progr Ser 139:69–77. https://doi.org/10.3354/meps139069

    Article  Google Scholar 

  • Penney MSA, Rawlings TA (2021) An examination of shallow-water hydroids (Cnidaria, Hydrozoa, Hydroidolina) in Cape Breton, Nova Scotia, using morphology and DNA barcoding. Northeast Nat 28:1–38. https://doi.org/10.1656/045.028.m1801

    Article  Google Scholar 

  • Pestorić B, Krpo-Ćetković J, Gangai B, Lučić D (2012) Pelagic cnidarians in the Boka Kotorska Bay, Montenegro (South Adriatic). Acta Adriat 52(2):289–300

    Google Scholar 

  • Porumb F (1959) Rathkea octopunctata (M. Sars), a new jellyfish for the Romanian Black Sea waters. Commun RPR Acad Buchar 9:1037–1040

    Google Scholar 

  • Porumb F (1994–1995) Le zooplankton des eaux Roumaines de la Mer Noire. Cercetari marine/Recherches Marines 27–28:159–252

  • Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: A review. Hydrobiologia 451:27–44. https://doi.org/10.1007/978-94-010-0722-1_4

    Article  Google Scholar 

  • Raykov V, Oros A (2007) Black Sea Transboundary Diagnostic Analysis. BSERP, BSC, UNDP, GES, UNOPS, pp 1-263. https://doi.org/10.13140/2.1.1177.6807

  • Riisgård HU, Madsen CV (2011) Clearance rates of ephyrae and small medusae of the common jellyfish Aurelia aurita offered different types of prey. J Sea Res 65(1):51–57. https://doi.org/10.1016/j.seares.2010.07.002

    Article  Google Scholar 

  • Robinson KL, Ruzicka JJ, Decker MB, Brodeur RD, Hernandez FJ, Quiñones J, Acha EM, Uye S-I, Mianzan H, Graham WM (2014) Jellyfish, forage fish, and the world’s major fisheries. Oceanography 27(4):104–115. https://doi.org/10.5670/oceanog.2014.90

    Article  Google Scholar 

  • Russel FS (1940) On some medusae of the genera Podocoryne and Phialopsis. J Mar Biol Assoc UK 24:525–531. https://doi.org/10.1017/S0025315400045434

    Article  Google Scholar 

  • Sakalli A, Başusta N (2018) Sea surface temperature change in the Black Sea under climate change: A simulation of the sea surface temperature up to 2100. Int J Climatol 38(7):4687–4698. https://doi.org/10.1002/joc.5688

    Article  Google Scholar 

  • Selifonova Z (2009) Oithona brevicornis Giesbrecht (Copepoda, Cyclopoida) in harborages of the northeastern part of the Black Sea shelf. Inland Water Biol 2(1):30–32. https://doi.org/10.1134/S1995082909010052

    Article  Google Scholar 

  • Schmid V (1974) Regeneration in medusa buds and medusae of Hydrozoa. Integr Comp Biol 14:773–781

    Google Scholar 

  • Schmidt HE (1971) Some new records of hydroids from the Gulf of Aqaba with zoogeographical remarks on the Red Sea area. J Mar Biol Assoc India 13(1):27–51

    Google Scholar 

  • Schuchert P (1996) The marine fauna of New Zealand. athecate hydroids and their medusae (Cnidaria: Hydrozoa). NZ Oceanogr Inst Mem 106:1–159

    Google Scholar 

  • Schuchert P (2007) The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Filifera Part 2. Rev Suisse Zool 114:195–396. https://doi.org/10.5962/bhl.part.80395

    Article  Google Scholar 

  • Shiganova T (1998) Invasion of the Black Sea by the ctenophore Mnemiopsis leidyi and recent changes in pelagic community structure. Fish Oceanogr 7:305–310. https://doi.org/10.1046/j.1365-2419.1998.00080.x

    Article  Google Scholar 

  • Schlitzer R (2018) Ocean Data View. ODV 5.5.2

  • Stanev EV, Peneva E, Chtirkova B (2019) Climate change and regional ocean water mass disappearance: Case of the Black Sea. JGR Oceans 124:4803–4819. https://doi.org/10.1029/2019JC015076

    Article  Google Scholar 

  • Tabarcea C (2020) Knowledge of the current diversity of the microzooplankton community from the Romanian Black Sea waters - populations of Tintinnids (Ciliophora). Summary of the PhD thesis:1–22. https://www.ibiol.ro/doctorat/anunt/Tabarcea/Rezumat%20EN.pdf. Accessed 7 April 2021

  • Teacă A (2006) Hydrozoa in the NW-W region of the Black Sea. In: Proceeding of 1st Biannual Scientific Conference Black Sea Ecosystem 2005 and beyond, 8–10 May, Istanbul, pp 154–163

  • Teacă A, Begun T, Gomoiu M-T, Secrieru D (2016) National Research and Development Institute for Marine Geology and Geoecology – GeoEcoMar, Romania: Macrobenthos data from the Romanian part of the Black Sea between 2003 and 2011. Ocean Biogeographic Information System. Intergovernmental Oceanographic Commission of UNESCO.https://www.iobis.org. Accessed 7 April 2021

  • Teacă A, Mureșan M, Begun T, Popa A, Ion G (2019) Marine benthic habitats within a physical disturbed site from the Romanian Coast of the Black Sea. J Environ Prot Ecol 20(2):723–732

    Google Scholar 

  • Todorova V, Konsulova T, Varna (2005) Bulgaria. http://www.blacksea-commission.org/_publ-Manual_zoobenthos.asp. Accessed 6 April 2021

  • Topçu N, Martell L, Yilmaz IN, Isinibilir M (2018) Benthic hydrozoans as potential indicators of water masses and anthropogenic impact in the Sea of Marmara. Mediterr Mar Sci 19(2):273–283. https://doi.org/10.12681/mms.15117

    Article  Google Scholar 

  • Touzri C, Hamdi H, Goy J, Yahia D, Yahia MND (2012) Diversity and distribution of gelatinous zooplankton in the southwestern Mediterranean Sea. Mar Ecol 33(4):393–406. https://doi.org/10.1111/j.1439-0485.2012.00510.x

    Article  Google Scholar 

  • Trinci G (1903) Di una nuova specie di Cytaeis gemmante del Golfo di Napoli. Mitteilungenaus der Zoologischen Station zu Neapel 16:1–34

    Google Scholar 

  • Uchida T, Sugiura Y (1977) On medusa-budding in the anthomedusa, Podocoryne minima (Trinci). Publications of the Seto Marine Biological Laboratory 24:52–57

    Article  Google Scholar 

  • Vershinin A (2008) Phytoplankton of north-eastern Black Sea: composition, annual changes in community structure, and the problem of native species. In: Modern problems of algology, abstracts of the Int. Sci. Conf. and the VII Workshop on Marine Biology, Rostov-on-Don, pp 403–415

  • Wang C, Xu Z, Huang J, Donghui G, Lin M, Xia Z (2016) Taxonomic notes on Hydroidomedusae (Cnidaria) from South China Sea III: Family Rathkeidae and Zancleopsidae. Zool Syst 41:392–403. https://doi.org/10.11865/zs.201644

    Article  Google Scholar 

  • Winkle D, Longnecker K, Blackstone N (2000) The effects of hermit crabs on hydractiniid hydroids. Mar Ecol 21:55–67. https://doi.org/10.1046/j.1439-0485.2000.00693.x

    Article  Google Scholar 

  • Yilmaz IN (2014) Collapse of zooplankton stocks during Liriope tetraphylla (Hydromedusa) blooms and dense mucilaginous aggregations in a thermohaline stratified basin. Mar Ecol 36:595–610. https://doi.org/10.1111/maec.12166

    Article  Google Scholar 

  • Zelickman E, Gelfand V, Shifrin M (1969) Growth, reproduction and nutrition of some Barents Sea hydromedusae in natural aggregations. Mar Biol 4:167–173. https://doi.org/10.1007/BF00393889

    Article  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Romanian Ministry of Research in the framework of the CORE Programme projects: PN 19200302 and PN 19200102.The authors thank all colleagues who helped at samples sorting and made suggestions for manuscript improving.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Muresan Mihaela and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mihaela Mureşan.

Ethics declarations

Ethics approval

This is an observational study. No ethical approval is required.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Informed consent

The study did not use any human subjects, so no consent was needed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mureşan, M., Teacă, A. & Begun, T. First record of the hydrozoan Podocorynoides minima in the Romanian Black Sea waters. Biologia 77, 1819–1828 (2022). https://doi.org/10.1007/s11756-022-01051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11756-022-01051-5

Keywords

Navigation