Skip to main content
Log in

Increasing the replicability for linear models via adaptive significance levels

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

We put forward an adaptive \(\alpha \) (type I error) that decreases as the information grows for hypothesis tests comparing nested linear models. A less elaborate adaptation was presented in Pérez and Pericchi (Stat Probab Lett 85:20–24, 2014) for general i.i.d. models. The calibration proposed in this paper may be interpreted as a Bayes–non-Bayes compromise, of a simple translation of a Bayes factor on frequentist terms that leads to statistical consistency, and most importantly, it is a step toward statistics that promotes replicable scientific findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1970) Handbook of mathematical functions. National Bureau of Standards, Washington, D.C

    MATH  Google Scholar 

  • Acuna E (2015) Regresión Aplicada usando R. Universidad de Puerto Rico Recinto de Mayagüez, Departamento de Ciencias Matemáticas

  • Bayarri MJ, Berger JO, Jang W, Ray S, Pericchi LR, Visser I (2019) Prior-based Bayesian information criterion. Stat Theory Relat Fields 3(1):2–13

    Article  MathSciNet  Google Scholar 

  • Benjamin D, Berger J, Johannesson M, Nosek B, Wagenmakers E-J, Berk R, Bollen K, Brembs B, Brown L, Camerer C, Cesarini D, Chambers C, Clyde M, Cook T, De Boeck P, Dienes Z, Dreber A, Easwaran K, Efferson C, Fehr E, Fidler F, Field A, Forster M, George E, Gonzalez R, Goodman S, Green E, Green D, Greenwald A, Hadfield J, Hedges L, Held L, Hua Ho T, Hoijtink H, Hruschka D, Imai K, Imbens G, Ioannidis J, Jeon M, Jones J, Kirchler M, Laibson D, List J, Little R, Lupia A, Machery E, Maxwell S, McCarthy M, Moore D, Morgan S, Munafó M, Nakagawa S, Nyhan B, Parker T, Pericchi L, Perugini M, Rouder J, Rousseau J, Savalei V, Schönbrodt F, Sellke T, Sinclair B, Tingley D, Van Zandt T, Vazire S, Watts D, Winship C, Wolpert R, Xie Y, Young C, Zinman J, Johnson V (2018) Redefine statistical significance. Nat Human Behav 2:6–10

    Article  Google Scholar 

  • Berger J, Bayarri MJ, Pericchi LR (2014) The effective sample size. Economet Rev 33(1–4):197–217

    Article  MathSciNet  Google Scholar 

  • Berger J, Pericchi L (2001) Objective Bayesian methods for model selection: introduction and comparison. In: Model selection. Institute of Mathematical Statistics, pp 135–207

  • Casella G, Berger R (2001) Statistical inference, 2nd edn. Duxbury Resource Center

  • Casella G, Girón J, Martínez L, Moreno E (2009) Consistency of Bayesian procedures for variable selection. Ann Stat 37(3):1207–1228

    Article  MathSciNet  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Psychology Press

  • Findley DF (1991) Counterexamples to parsimony and BIC. Ann Inst Stat Math 43:505–514

    Article  MathSciNet  Google Scholar 

  • Johnson VE, Rossell D (2010) On the use of non-local prior densities in Bayesian hypothesis tests. J Roy Stat Soc Ser B (Stat Methodol) 72(2):143–170

    Article  MathSciNet  Google Scholar 

  • Pérez ME, Pericchi LR (2014) Changing statistical significance with the amount of information: the adaptive alpha significance level. Stat Probab Lett 85:20–24

    Article  Google Scholar 

  • Richter W-D, Schumacher J (2000) Asymptotic expansions for large deviation probabilities of noncentral generalized chi-square distributions. Multivar Anal 75:184–218

    Article  MathSciNet  Google Scholar 

  • Sellke T, Bayarri MJ, Berger JO (2001) Calibration of \(p\) values for testing precise null hypotheses. Am Stat 55(1):62–71

    Article  MathSciNet  Google Scholar 

  • Wasserstein RL, Lazar NA (2016) The ASA statement on \(p\)-values: context, process, and purpose. Am Stat 70(2):129–133

    Article  MathSciNet  Google Scholar 

  • Woods H, Steinour HH, Starke HR (1932) Effect of composition of Portland cement on heat evolved during hardening. Ind Eng Chem 24(11):1207–1214

    Article  Google Scholar 

Download references

Acknowledgements

The work of M.E. Pérez and L.R. Pericchi has been partially funded by NIH grants U54CA096300, P20GM103475, and R25MD010399.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vélez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1 The likelihood ratio

Define

$$\begin{aligned} r({\mathbf {y}}|({\mathbf {X}}_i,{\mathbf {X}}_j))=\dfrac{f({\mathbf {y}}|{\mathbf {X}}_i\widehat{\varvec{\delta }}_i,S_i^2{\mathbf {I}}_n)}{f({\mathbf {y}}|{\mathbf {X}}_j\widehat{\varvec{\beta }}_j,S_j^2{\mathbf {I}}_n)} \end{aligned}$$

we will perform the calculations for the hypothesis test

$$\begin{aligned} H_0:\text {Model} M_i versus H_1:\text {Model} M_j. \end{aligned}$$

Indeed, for model \(M_i\)

$$\begin{aligned} L({\mathbf {y}}|{\mathbf {X}}_i,\sigma _i^2,\varvec{\delta }_i)=\frac{1}{(2\pi )^{n/2}(\sigma _i^2)^{n/2}}\exp \left\{ -\frac{1}{2\sigma _i^2}({\mathbf {y}}-{\mathbf {X}}_i\varvec{\delta }_i)^t({\mathbf {y}}-{\mathbf {X}}_i\varvec{\delta }_i)\right\} . \end{aligned}$$

Since the MLE of \(\varvec{\delta }_i\) is \(\widehat{\varvec{\delta }}_i=({\mathbf {X}}_i^t{\mathbf {X}}_i)^{-1}{\mathbf {X}}_i^t{\mathbf {y}}\) and the MLE of \(\sigma _i^2\) is \(S_{i}^2=\dfrac{{\mathbf {y}}^t({\mathbf {I}}-{\mathbf {H}}_i){\mathbf {y}}}{n}\), where \({\mathbf {H}}_i={\mathbf {X}}_i({\mathbf {X}}_i^t{\mathbf {X}}_i)^{-1}{\mathbf {X}}_i^t\)

$$\begin{aligned} \sup _{\Omega _0}L({\mathbf {y}}|{\mathbf {X}}_i,\sigma _i^2,\varvec{\delta }_i)=\frac{1}{(2\pi )^{n/2}(S_{i}^2)^{n/2}}\exp \left\{ -\frac{n}{2}\right\} . \end{aligned}$$

For model \(M_j\)

$$\begin{aligned} L({\mathbf {y}}|{\mathbf {X}}_j,\sigma _j^2,\varvec{\beta }_j)=\frac{1}{(2\pi )^{n/2}(\sigma _j^2)^{n/2}}\exp \left\{ -\frac{1}{2\sigma _j^2}({\mathbf {y}}-{\mathbf {X}}_j\varvec{\beta }_j)^t({\mathbf {y}}-{\mathbf {X}}_j\varvec{\beta }_j)\right\} . \end{aligned}$$

Since MLE of \(\varvec{\beta }_j\) is \(\widehat{\varvec{\beta }}_j=({\mathbf {X}}_j^t{\mathbf {X}}_j)^{-1}{\mathbf {X}}_j^t{\mathbf {y}}\) and the MLE of \(\sigma _j^2\) is \(S_{j}^2=\dfrac{{\mathbf {y}}^t({\mathbf {I}}-{\mathbf {H}}_j){\mathbf {y}}}{n}\)

$$\begin{aligned} \sup _{\Omega }L({\mathbf {y}}|{\mathbf {X}}_j,\sigma _j^2,\varvec{\beta }_j)=\frac{1}{(2\pi )^{n/2}(S_{j}^2)^{n/2}}\exp \left\{ -\frac{n}{2}\right\} . \end{aligned}$$

Thus, the likelihood ratio is

$$\begin{aligned} r({\mathbf {y}}|({\mathbf {X}}_i,{\mathbf {X}}_j))=\dfrac{\sup _{\Omega _0}L({\mathbf {y}}|{\mathbf {X}}_i,\sigma _i^2,\varvec{\alpha }_i)}{\sup _{\Omega }L({\mathbf {y}}|{\mathbf {X}}_j,\sigma _j^2,\varvec{\beta }_j)}=\left( \frac{S_{j}^2}{S_{i}^2}\right) ^{\frac{n}{2}}=\left( \dfrac{{\mathbf {y}}^t({\mathbf {I}}-{\mathbf {H}}_j){\mathbf {y}}}{{\mathbf {y}}^t({\mathbf {I}}-{\mathbf {H}}_i){\mathbf {y}}}\right) ^{\frac{n}{2}}. \end{aligned}$$

Appendix 2 An expression for b in (10)

Consider linear regression model \(M_j: y_v=\beta _1+\beta _2x_{v2}+\cdots +\beta _j x_{vj}+\epsilon _v\) with \(1\le v\le n\) and \(2\le j\le k\), then

$$\begin{aligned} {\mathbf {X}}_j=\begin{bmatrix} 1&{} x_{12}-{\bar{x}}_2&{}\cdots &{}x_{1j}-{\bar{x}}_j\\ 1&{} x_{22}-{\bar{x}}_2&{}\cdots &{}x_{2j}-{\bar{x}}_j\\ \vdots &{}\vdots &{}\vdots &{}\vdots \\ 1&{}x_{n2}-{\bar{x}}_2&{}\cdots &{}x_{nj}-{\bar{x}}_j\\ \end{bmatrix} \end{aligned}$$

and

$$\begin{aligned} {\mathbf {X}}_j^t{\mathbf {X}}_j=\begin{bmatrix} n&{} 0&{}0&{}\cdots &{}0\\ 0&{} (n-1)s_2^2&{}(n-1)s_2s_3\rho _{23}&{}\cdots &{}(n-1)s_2s_j\rho _{2j}\\ \vdots &{}\vdots &{}\vdots &{}\vdots &{}\vdots \\ 0&{}(n-1)s_2s_j\rho _{2j}&{}(n-1)s_3s_j\rho _{2j}&{}\cdots &{}(n-1)s_j^2\\ \end{bmatrix} \end{aligned}$$

then

$$\begin{aligned} |{\mathbf {X}}_j^t{\mathbf {X}}_j|=n(n-1)^{j-1}\begin{vmatrix} s_2^2&s_2s_3\rho _{23}&\cdots&s_2s_j\rho _{2j}\\ s_2s_3\rho _{23}&s_3^2&\cdots&s_3s_j\rho _{3j}\\ \vdots&\vdots&\vdots&\vdots \\ s_2s_j\rho _{2j}&s_3s_j\rho _{3j}&\cdots&s_j^2\\ \end{vmatrix}, \end{aligned}$$

note that row l and column l are multiplied by \(s_l\), using properties of the determinants

$$\begin{aligned} |{\mathbf {X}}_j^t{\mathbf {X}}_j|=n(n-1)^{j-1}s_2^2s_3^2\cdots s_j^2\begin{vmatrix} 1&\rho _{23}&\cdots&\rho _{2j}\\ \rho _{23}&1&\cdots&\rho _{3j}\\ \vdots&\vdots&\vdots&\vdots \\ \rho _{2j}&\rho _{3j}&\cdots&1\\ \end{vmatrix}=n(n-1)^{j-1}\prod _{l=2}^{j}s_{l}^2|R_j| \end{aligned}$$

on the other hand,

$$\begin{aligned} R_j=\begin{bmatrix} 1&{} \rho _{23}&{}\cdots &{}\rho _{2j}\\ \rho _{23}&{} 1&{}\cdots &{}\rho _{3j}\\ \vdots &{}\vdots &{}\vdots &{}\vdots \\ \rho _{2j}&{}\rho _{3j}&{}\cdots &{}1\\ \end{bmatrix}=\begin{bmatrix} R_i&{} R_{ij}\\ R_{ij}&{}R_{j-i}\\ \end{bmatrix} \end{aligned}$$

where

$$\begin{aligned} R_{ij}=\begin{bmatrix} \rho _{2j+1}&{} \rho _{3j+1}&{}\cdots &{}\rho _{ii+1}\\ \rho _{2j+2}&{} \rho _{3j+2}&{}\cdots &{}\rho _{ii+2}\\ \vdots &{}\vdots &{}\vdots &{}\vdots \\ \rho _{2j}&{}\rho _{3j+2}&{}\cdots &{}\rho _{ij}\\ \end{bmatrix}~~\text {and}~~R_{j-i}=\begin{bmatrix} 1&{} \rho _{i+2i+1}&{}\cdots &{}\rho _{ji+1}\\ \rho _{i+1i+2}&{} 1&{}\cdots &{}\rho _{ji+2}\\ \vdots &{}\vdots &{}\vdots &{}\vdots \\ \rho _{i+1j}&{}\rho _{i+2j}&{}\cdots &{}1\\ \end{bmatrix}. \end{aligned}$$

Now since \({\mathbf {X}}_j\) is a full rank matrix, it can be seen that

$$\begin{aligned} |R_j|=|R_i||R_{j-i}-R_{ij}^tR_i^{-1}R_{ij}| \end{aligned}$$

thus

$$\begin{aligned} b=\frac{|\mathbf {X}_j^t\mathbf {X}_j|}{|\mathbf {X}_i^t\mathbf {X}_i|}=(n-1)^{j-i}\left( \prod _{l=i+1}^{j}s^2_{l}\right) |R_{j-i}-R_{ij}^tR_i^{-1}R_{ij}| \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vélez, D., Pérez, M.E. & Pericchi, L.R. Increasing the replicability for linear models via adaptive significance levels. TEST 31, 771–789 (2022). https://doi.org/10.1007/s11749-022-00803-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-022-00803-4

Keywords

Mathematics Subject Classification

Navigation