Skip to main content
Log in

Empirical likelihood inference for generalized additive partially linear models

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

Generalized additive partially linear models enjoy the simplicity of GLMs and the flexibility of GAMs because they combine both parametric and nonparametric components. Based on spline-backfitted kernel estimator, we propose empirical likelihood (EL)-based pointwise confidence intervals and simultaneous confidence bands (SCBs) for the nonparametric component functions to make statistical inference. Simulation study strongly supports the asymptotic theory and shows that EL-based SCBs are much easier for implementation and have better performance than Wald-type SCBs. We apply the proposed method to a university retention study and provide SCBs for the effect of the students information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Chen SX, Qin YS (2000) Empirical likelihood confidence intervals for local linear smoothers. Biometrika 87:946–953

    Article  MathSciNet  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, London

    MATH  Google Scholar 

  • Horowitz J, Mammen E (2004) Nonparametric estimation of an additive model with a link function. Ann Stat 32:2412–2443

    Article  MathSciNet  Google Scholar 

  • Horowitz J, Klemelä J, Mammen E (2006) Optimal estimation in additive regression models. Bernoulli 12:271–298

    Article  MathSciNet  Google Scholar 

  • Liang H, Qin Y, Zhang X, Ruppert D (2009) Empirical-likelihood-based inferences for generalized partially linear models. Scand J Stat 36:433–443

    Article  MathSciNet  Google Scholar 

  • Linton OB (1997) Efficient estimation of additive nonparametric regression models. Biometrika 84:469–473

    Article  MathSciNet  Google Scholar 

  • Linton OB, Härdle W (1996) Estimation of additive regression models with known links. Biometrika 83:529–540

    Article  MathSciNet  Google Scholar 

  • Linton OB, Nielsen JP (1995) A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika 82:93–100

    Article  MathSciNet  Google Scholar 

  • Liu R, Yang L (2010) Spline-backfitted kernel smoothing of additive coefficient model. Econ Theory 26:29–59

    Article  MathSciNet  Google Scholar 

  • Liu R, Yang L, Härdle W (2013) Oracally efficient two-step estimation of generalized additive model. J Am Stat Assoc 108:619–631

    Article  MathSciNet  Google Scholar 

  • Liu R, Härdle WK, Zhang G (2017) Statistical inference for generalized additive partially linear models. J Multivar Anal 162(c):1–15

    Article  MathSciNet  Google Scholar 

  • Ma S, Yang L (2011) Spline-backfitted kernel smoothing of partially linear additive model. J Stat Plan Inference 141:204–219

    Article  MathSciNet  Google Scholar 

  • Ma S, Carroll RJ, Liang H, Xu S (2015) Estimation and inference in generalized additive coefficient models for nonlinear interactions with high-dimensional covariates. Ann Stat 43:2102–2131

    MathSciNet  MATH  Google Scholar 

  • Ma S, Racine S, Yang L (2015) Spline regression in the presence of categorical predictors. J Appl Econ 30:705–717

    Article  MathSciNet  Google Scholar 

  • Owen A (2001) Empirical likelihood. Chapman & Hall/CRC, London

    Book  Google Scholar 

  • Park B, Mammen E, Härdle W, Borak S (2009) Time series modelling with semiparametric factor dynamics. J Am Stat Assoc 104:284–298

    Article  MathSciNet  Google Scholar 

  • Portnoy S (2011) Local asymptotics for quantile smoothing splines. Ann Stat 25:414–434

    MathSciNet  MATH  Google Scholar 

  • Severini T, Staniswalis J (1994) Quasi-likelihood estimation in semiparametric models. J Am Stat Assoc 89:501–511

    Article  MathSciNet  Google Scholar 

  • Stone CJ (1985) Additive regression and other nonparametric models. Ann Stat 13:689–705

    Article  MathSciNet  Google Scholar 

  • Stone CJ (1986) The dimensionality reduction principle for generalized additive models. Ann Stat 14:590–606

    Article  MathSciNet  Google Scholar 

  • Sun Y, Sundaram R, Zhao Y (2009) Empirical likelihood inference for the cox model with time-dependent coefficients via local partial likelihood. Scand J Stat 36:444–462

    Article  MathSciNet  Google Scholar 

  • Wang L, Yang L (2007) Spline-backfitted kernel smoothing of nonlinear additive autoregression model. Ann Stat 35:2474–2503

    MathSciNet  MATH  Google Scholar 

  • Wang J, Yang L (2009) Efficient and fast spline-backfitted kernel smoothing of additive models. Ann Inst Stat Math 61:663–690

    Article  MathSciNet  Google Scholar 

  • Wang L, Liu X, Liang H, Carroll RJ (2011) Estimation and variable selection for generalized additive partial linear models. Ann Stat 39:1827–1851

    MathSciNet  MATH  Google Scholar 

  • Xue L, Liang H (2010) Polynomial spline estimation for a generalized additive coefficient model. Scand J Stat 37:26–46

    Article  MathSciNet  Google Scholar 

  • Xue L, Yang L (2006) Additive coefficient modeling via polynomial spline. Stat Sin 16:1423–1446

    MathSciNet  MATH  Google Scholar 

  • Yang L, Sperlich S, Härdle W (2003) Derivative estimation and testing in generalized additive models. J Stat Plan Inference 115:521–542

    Article  MathSciNet  Google Scholar 

  • Zheng S, Liu R, Yang L, Härdle W (2016) Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection. Test 25:607–626

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and two anonymous referees for their constructive and insightful comments and suggestions to improve the manuscript. Yichuan Zhao acknowledges the support from both the NSF Grant (DMS-2006304) and the NSA Grant (H98230-19-1-0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 244 KB)

Appendix A: Assumptions and proofs

Appendix A: Assumptions and proofs

We mean by “\(\sim \)” both sides having the same order as \(n\rightarrow \infty \) in the rest of the paper. To obtain EL SCBs, we need the following assumptions which are similar assumptions to construct Wald-type SCBs. See Liu et al. (2017) for more details.

(A1) The additive component functions \(m_{\alpha }\in C^{\left( 1\right) }\left[ 0,1\right] ,1\le \alpha \le d_{2}\) with \(m_{1}\in C^{\left( 2\right) }\left[ 0,1\right] \), \(m_{\alpha }^{\prime }\in \mathrm{Lip}\left( \left[ 0,1\right] , C_{m}\right) , 2\le \alpha \le d_{2}\) for some constant \(C_{m}>0\).

(A2) The inverse link function \(b^{\prime }\)  satisfies \(b^{\prime }\in C^{2}\left( {\mathbb {R}}\right) ,b^{\prime \prime }\left( \theta \right) >0,\theta \in {\mathbb {R}}\)  while for a compact interval \(\Theta \) whose interior contains \(m\left( \left[ 0,1\right] ^{d_{2}}\right) \), \(C_{b}>\max _{\theta \in \Theta }b^{\prime \prime }\left( \theta \right) \ge \min _{\theta \in \Theta }b^{\prime \prime }\left( \theta \right) >c_{b}\) for constants \( C_{b}>c_{b}>0\).

(A3) The conditional variance function \(\sigma ^{2}\left( {\mathbf {x}}\right) \) is measurable and bounded. The errors \(\left\{ \varepsilon _{i}\right\} _{i=1}^{n}\) satisfy \({\mathsf {E}}\left( \varepsilon _{i}|{\mathbf {T}}_{i}^{{\top }},{\mathbf {X}}_{i}^{{\top }}\right) =0\) and \({\mathsf {E}}\varepsilon _{i}^{6}<\infty \).

(A4) The density function \(f\left( {\mathbf {x}}\right) \)  of \(\left( X_{1},\ldots ,X_{d_{2}}\right) \) is continuous and

$$\begin{aligned} 0<c_{f}\le \inf \limits _{{\mathbf {x}}\in \varvec{\chi }}f\left( {\mathbf {x}} \right) \le \sup \limits _{{\mathbf {x}}\in \varvec{\chi }}f\left( {\mathbf {x}} \right) \le C_{f}<\infty . \end{aligned}$$

The marginal densities \(f_{\alpha }\left( x_{\alpha }\right) \) of \(X_{\alpha }\) have continuous derivatives on \(\left[ 0,1\right] \) as well as the uniform upper bound \(C_{f}\) and lower bound \(c_{f}\).

(A5) \(\left\{ {\mathbf {Z}}_{i}=\left( {\mathbf {T}}_{i}^{{\top }},{\mathbf {X}} _{i}^{{\top }},\varepsilon _{i}\right) \right\} _{i=1}^{n}\) are independent and identically distributed.

(A6) There exist constants \(0<c_{\delta }<C_{\delta }<\infty \) and \( 0<c_{{\mathbf {Q}}}<C_{{\mathbf {Q}}}<\infty \) such that \(c_{\delta }\le {\mathsf {E}}(\left| T_{k}\right| ^{2+\delta }\mid \mathbf {X=x})\le C_{\delta }\) for some \(\delta >0,\) and \(c_{{\mathbf {Q}}}I_{d_{1}\times d_{1}}\le {\mathsf {E}}\left( \mathbf {TT}^{\top }\mid \mathbf {X=x}\right) \le C_{{\mathbf {Q}} }I_{d_{1}\times d_{1}}\).

(A7) The kernel function K is a symmetric probability density, supported on \(\left[ -1,1\right] \) and \(K\in \mathrm{Lip}\left( \left[ -1,1\right] ,C_{K}\right) \) for some positive constant \(C_{K}>0\). The bandwidth \(h=h_{n}\) \( \sim n^{-1/5}(\log n)^{-1/4}\).

(A8) The number of interior knots satisfies: \(N\thicksim n^{1/4}\log n,\) i.e., \(c_{N}n^{1/4}\) \(\log n\le N\le C_{N}n^{1/4}\log n\) for some positive constants \(c_{N}\),\(C_{N}.\)

Lemma A.1

Under Assumptions (A1)–(A7), as \(n\rightarrow \infty \),

$$\begin{aligned} \sqrt{nh}\left[ n^{-1}\sum \limits _{i=1}^{n}Z_{i}\left\{ m_{1}\left( x_{1}\right) \right\} -\mathrm{bias}_{1}\left( x_{1}\right) h^{2} \right] /v_{1}\left( x_{1}\right) \overset{{\mathcal {L}}}{\rightarrow } N\left( 0,1\right) , \end{aligned}$$
(A.1)

with

$$\begin{aligned} \mathrm{bias}{}_{1}\left( x_{1}\right)= & {} \mu _{2}\left( K\right) \left[ m_{1}^{\prime \prime }\left( x_{1}\right) f_{1}\left( x_{1}\right) {\mathsf {E}}\left[ b^{\prime \prime }\left\{ m\left( \mathbf {T,X}\right) \right\} |X_{1}=x_{1} \right] \right. \\&+m_{1}^{\prime }\left( x_{1}\right) \frac{\partial }{\partial x_{1}} \left\{ f_{1}\left( x_{1}\right) {\mathsf {E}}\left[ b^{\prime \prime }\left\{ m\left( \mathbf {T,X}\right) \right\} |X_{1}=x_{1}\right] \right\} \\&\left. -\left\{ m_{1}^{\prime }\left( x_{1}\right) \right\} ^{2}f_{1}\left( x_{1}\right) {\mathsf {E}}\left[ b^{\prime \prime \prime }\left\{ m\left( \mathbf {T,X}\right) \right\} |X_{1}=x_{1}\right] \right] , \\ v_{1}^{2}\left( x_{1}\right)= & {} f_{1}\left( x_{1}\right) {\mathsf {E}}\left\{ \sigma ^{2}\left( {\mathbf {T}},{\mathbf {X}}\right) |X_{1}=x_{1}\right\} \left\| K\right\| _{2}^{2}. \end{aligned}$$

In addition,

$$\begin{aligned}&n^{-1}h\sum \limits _{i=1}^{n}Z_{i}^{2}\left\{ m_{1}\left( x_{1}\right) \right\} \rightarrow _{p}v_{1}^{2}\left( x_{1}\right) , \end{aligned}$$
(A.2)
$$\begin{aligned}&\sup _{x_{1}\in [h,1-h]}\left| n^{-1}\sum \limits _{i=1}^{n}Z_{i}\left\{ m_{1}\left( x_{1}\right) \right\} \right| ={{\mathcal {O}}}_{a.s.}\left( n^{-1/2}h^{-1/2}\log n+h^{2}\right) . \end{aligned}$$
(A.3)

Proof

See the supplement. \(\square \)

Lemma A.2

Under Assumptions (A1)–(A8), as \(n\rightarrow \infty \),

$$\begin{aligned} \sup _{x_{1}\in \left[ h,1-h\right] }\left| n^{-1}\sum \limits _{i=1}^{n} \left[ {\hat{Z}}_{i}\left\{ m_{1}\left( x_{1}\right) \right\} -Z_{i}\left\{ m_{1}\left( x_{1}\right) \right\} \right] \right| ={{\mathcal {O}}}_{a.s.}\left( n^{-1/2}\log n\right) , \end{aligned}$$
(A.4)

and

$$\begin{aligned} \sup _{x_{1}\in \left[ h,1-h\right] }\left| n^{-1}\sum \limits _{i=1}^{n} \left[ {\hat{Z}}_{i}^{2}\left\{ m_{1}\left( x_{1}\right) \right\} -Z_{i}^{2}\left\{ m_{1}\left( x_{1}\right) \right\} \right] \right| ={\scriptstyle {\mathcal {O}}}_{a.s.}\left( n^{-1/5}\right) . \end{aligned}$$
(A.5)

Proof

See the supplement. \(\square \)

Proof of Theorem 1

See the supplement. \(\square \)

Proof of Theorem 2

Denote

$$\begin{aligned} G\left( t\right) =h^{1/2}\int _{0}^{1}K_{h}\left( t-s\right) \mathrm{d}W\left( s\right) , \end{aligned}$$

with \(W\left( s\right) \) a Wiener process. According to the equation (27) in Sun et al. (2009), one has that

$$\begin{aligned} \sup \left| \mathrm{P}\left[ \frac{r_{h}}{2d_{h}}\left\{ \sup \limits _{x_{1}\in \left[ h,1-h\right] }\left| G\left( x_{1}\right) \right| ^{2}-d_{h}^{2}\right\} <c\right] -e^{-2e^{-c}}\right| ={{\mathcal {O}}}\left\{ \left( \log n\right) ^{-1}\right\} , \end{aligned}$$
(A.6)

where \(r_{h},d_{h}\) are defined in Theorem 2. According to equation (A.11) in the supplement, one has

$$\begin{aligned}&-2\log {\tilde{R}}\left\{ m_{1}\left( x_{1}\right) \right\} \\&\quad =n\left[ n^{-1}\sum \limits _{i=1}^{n}Z_{i}^{2}\left\{ m_{1}\left( x_{1}\right) \right\} \right] ^{-1}\left[ n^{-1}\sum \limits _{i=1}^{n}Z_{i} \left\{ m_{1}\left( x_{1}\right) \right\} \right] ^{2}+{\scriptstyle {\mathcal {O}}}_{p}\left( 1\right) \\&\quad =n\left\{ v_{1}^{2}\left( x_{1}\right) h^{-1}\right\} ^{-1}\left[ n^{-1}\sum \limits _{i=1}^{n}Z_{i}\left\{ m_{1}\left( x_{1}\right) \right\} \right] ^{2}+{\scriptstyle {\mathcal {O}}}_{p}\left( 1\right) \\&\quad =\left[ \left( nh\right) ^{1/2}v_{1}^{-1}\left( x_{1}\right) n^{-1}\sum \limits _{i=1}^{n}Z_{i}\left\{ m_{1}\left( x_{1}\right) \right\} \right] ^{2}+{\scriptstyle {\mathcal {O}}}_{p}\left( 1\right) \end{aligned}$$

due to Eq. (A.2). According to equation (A.7) in the supplement and Theorem 1 in Zheng et al. (2016),

$$\begin{aligned}&\sup \limits _{x_{1}\in \left[ h,1-h\right] }\left| \left( nh\right) ^{1/2}v_{1}^{-1}\left( x_{1}\right) n^{-1}\sum \limits _{i=1}^{n}Z_{i}\left\{ m_{1}\left( x_{1}\right) \right\} -G\left( x_{1}\right) /\left\| K\right\| _{2}^{2}\right| \\&\quad ={\scriptstyle {\mathcal {O}}}_{p}\left\{ \left( \log n\right) ^{-1/2}\right\} . \end{aligned}$$

Therefore,

$$\begin{aligned} \sup \limits _{x_{1}\in \left[ h,1-h\right] }\left| -2\log {\tilde{R}} \left\{ m_{1}\left( x_{1}\right) \right\} -\left| G\left( x_{1}\right) \right| ^{2}/\left\| K\right\| _{2}^{4}\right| ={\scriptstyle {\mathcal {O}}}_{p}\left( 1\right) . \end{aligned}$$

Then, the theorem is proved by replacing \(G\left( x_{1}\right) \) by \(-2\log {\tilde{R}}\left\{ m_{1}\left( x_{1}\right) \right\} \left\| K\right\| _{2}^{4}\) in Eq. (A.6). \(\square \)

Proof of Theorem 3

See the supplement. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Zhao, Y. Empirical likelihood inference for generalized additive partially linear models. TEST 30, 569–585 (2021). https://doi.org/10.1007/s11749-020-00731-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-020-00731-1

Keywords

Mathematics Subject Classification

Navigation