Skip to main content
Log in

Smoothed empirical likelihood inference via the modified Cholesky decomposition for quantile varying coefficient models with longitudinal data

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

It is essential to deal with the within-subject correlation among repeated measures over time to improve statistical inference efficiency. However, it is a challenging task to correctly specify a working correlation in quantile regression with longitudinal data. In this paper, we first develop an adaptive approach to estimate the within-subject covariance matrix of quantile regression by applying a modified Cholesky decomposition. Then, weighted kernel GEE-type quantile estimating equations are proposed for varying coefficient functions. Note that the proposed estimating equations include a discrete indicator function, which results in some problems for computation and asymptotic analysis. Thus, we construct smoothed estimating equations by introducing a bounded kernel function. Furthermore, we develop a smoothed empirical likelihood method to improve the accuracy of interval estimation. Finally, simulation studies and a real data analysis indicate that the proposed method has superior advantages over the existing methods in terms of coverage accuracies and widths of confidence intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chen J, Sitter RR, Wu C (2002) Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys. Biometrika 89:230–237

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Yao Q (1998) Efficient estimation of conditional variance functions in stochastic regression. Biometrika 85:645–660

    Article  MathSciNet  MATH  Google Scholar 

  • Fu L, Wang YG (2016) Efficient parameter estimation via Gaussian copulas for quantile regression with longitudinal data. J Multivar Anal 143:492–502

    Article  MathSciNet  MATH  Google Scholar 

  • Hastie T, Tibshirani R (1993) Varying-coefficient models. J R Stat Soc Ser B 55:757–796

    MathSciNet  MATH  Google Scholar 

  • Horowitz JL (1998) Bootstrap methods for median regression models. Econometrica 66:1327–1351

    Article  MathSciNet  MATH  Google Scholar 

  • Huang JZ, Wu CO, Zhou L (2002) Varying-coefficient models and basis function approximations for the analysis of repeated measurements. Biometrika 89:111–128

    Article  MathSciNet  MATH  Google Scholar 

  • Huang JZ, Wu CO, Zhou L (2004) Polynomial spline estimation and inference for varying coefficient models with longitudinal data. Stat Sin 14:763–788

    MathSciNet  MATH  Google Scholar 

  • Leng C, Zhang W, Pan J (2010) Semiparametric mean–covariance regression analysis for longitudinal data. J Am Stat Assoc 105:181–193

    Article  MathSciNet  MATH  Google Scholar 

  • Leng C, Zhang W (2014) Smoothing combined estimating equations in quantile regression for longitudinal data. Stat Comput 24:123–136

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y (2011) Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation. Biometrika 98:355–370

    Article  MathSciNet  MATH  Google Scholar 

  • Liu S, Li G (2015) Varying-coefficient mean–covariance regression analysis for longitudinal data. J Stat Plann Inference 160:89–106

    Article  MathSciNet  MATH  Google Scholar 

  • McCullagh P (1983) Quasi-likelihood functions. Ann Stat 11:59–67

    Article  MATH  Google Scholar 

  • Noh HS, Park BU (2010) Sparse varying coefficient models for longitudinal data. Stat Sin 20:1183–1202

    MathSciNet  MATH  Google Scholar 

  • Owen AB (1990) Empirical likelihood ratio confidence regions. Ann Stat 18:90–120

    Article  MathSciNet  MATH  Google Scholar 

  • Owen AB (2001) Empirical likelihood. Chapman and Hall, New York

    Book  MATH  Google Scholar 

  • Pourahmadi M (1999) Joint mean–covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86:677–690

    Article  MathSciNet  MATH  Google Scholar 

  • Qin J, Lawless J (1994) Empirical likelihood and general estimating equations. Ann Stat 22:300–325

    Article  MathSciNet  MATH  Google Scholar 

  • Serfling R (1980) Approximation theorems of mathematical statistics. Wiley, New York

    Book  MATH  Google Scholar 

  • Tang C, Leng C (2011) Empirical likelihood and quantile regression in longitudinal data analysis. Biometrika 98:1001–1006

    Article  MathSciNet  MATH  Google Scholar 

  • Tang Y, Wang Y, Li J, Qian W (2015) Improving estimation efficiency in quantile regression with longitudinal data. J Stat Plan Inference 165:38–55

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Xia Y (2009) Shrinkage estimation of the varying coefficient model. J Am Stat Assoc 104:747–757

    Article  MathSciNet  MATH  Google Scholar 

  • Wang HJ, Zhu Z (2011) Empirical likelihood for quantile regression models with longitudinal data. J Stat Plan Inference 141:1603–1615

    Article  MathSciNet  MATH  Google Scholar 

  • Wang K, Lin L (2015) Simultaneous structure estimation and variable selection in partial linear varying coefficient models for longitudinal data. J Stat Comput Simul 85:1459–1473

    Article  MathSciNet  Google Scholar 

  • Wang L, Li H, Huang J (2008) Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. J Am Stat Assoc 103:1556–1569

    Article  MathSciNet  MATH  Google Scholar 

  • Wu CO, Chiang CT, Hoover DR (1998) Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data. J Am Stat Assoc 93:1388–1402

    Article  MathSciNet  MATH  Google Scholar 

  • Xue L, Zhu L (2007) Empirical likelihood for a varying coefficient model with longitudinal data. J Am Stat Assoc 102:642–654

    Article  MathSciNet  MATH  Google Scholar 

  • Ye H, Pan J (2006) Modelling of covariance structures in generalised estimating equations for longitudinal data. Biometrika 93:927–941

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan X, Lin N, Dong X, Liu T (2017) Weighted quantile regression for longitudinal data using empirical likelihood. Sci China Math 60:147–164

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang DW, Lin XH, Raz J, Sowers MF (1998) Semiparametric stochastic mixed models for longitudinal data. J Am Stat Assoc 93:710–719

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang W, Leng C (2012) A moving average Cholesky factor model in covariance modeling for longitudinal data. Biometrika 99:141–150

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng X, Fung WK, Zhu Z (2013) Robust estimation in joint mean–covariance regression model for longitudinal data. Ann Inst Stat Math 65:617–638

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the editor and anonymous referees for their detailed comments on the earlier version of the manuscript, which leads to a much improved paper. This work is supported by the National Social Science Fund of China (Grant No. 17CTJ015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaohui Guo.

Appendix

Appendix

To establish the asymptotic properties of the proposed estimators, the following regularity conditions are needed in this paper.

(C1) The bandwidth satisfies \(h_1 = {N^{{{ - 1} \big / 5}}}{h_0}\) for some constant \(h_0>0\).

(C2) \({\lim _{n \rightarrow \infty }}{N^{{{ - 6} \big / 5}}}\sum \nolimits _{i = 1}^n {m_i^2} = \kappa \) for some \(0\le \kappa <\infty \).

(C3) The kernel function \(K\left( \cdot \right) \) has a compact support on \({\mathscr {R}}\) and satisfies \(\int {K\left( u \right) \hbox {d}u = 1}\), \( \int {{K^2}\left( u \right) \hbox {d}u < \infty }\), \(\int {{u^2}K\left( u \right) \hbox {d}u < \infty }\), \(\int {uK\left( u \right) \hbox {d}u = 0} \) and \(\int {{u^4}K\left( u \right) \hbox {d}u < \infty }\).

(C4) There exists a constant \(\delta \in \left( {{2 \big / {5,\left. 2 \right] }}} \right. \), and we have \({\sup _t}E\left( {{{\left| {{\psi _\tau }\left( {{\varepsilon _1}\left( t_{ij} \right) } \right) } \right| }^{2 + \delta }}} \left| t_{ij}\right. \right. \left. =t \right) < \infty \) and \({\sup _t}E\left( {{{\left| {{\psi _{\tau h} }\left( {{\varepsilon _1}\left( t_{ij} \right) } \right) } \right| }^{2 + \delta }}} \left| { t_{ij}=t} \right. \right) < \infty \) for all \(i=1,\ldots ,n, j=1,\ldots ,m_i, l=1,\ldots ,p\) and \(t\in S(f_T)\).

(C5) For all \(l, r=1,\ldots ,p\), \(\beta _r\left( {{t}} \right) \), \(\eta _{lr}\left( {{t}} \right) \) and \(f_T\left( {{t}} \right) \) have continuous second derivatives at \(t_0\).

(C6) \(\left\{ {{{\left( {{Y_{ij}},{\varvec{X}_i^\mathrm{T}}\left( {{t_{ij}}} \right) } \right) }^\mathrm{T}},j = 1,\ldots ,{m_i}} \right\} \) are independently and identically distributed for \(i=1,\ldots ,n\). We assume that the dimension p of the covariates \({\varvec{X}_i}\left( {{t_{ij}}} \right) \) is fixed and there is a positive constant M such that \(\left| {{X_{il}}\left( t \right) } \right| \le M\) for all t and \(i=1,...,n,l=1,...,p\).

(C7) The covariance function \(\rho _\varepsilon \left( {{t}} \right) \) is continuous at \(t_0\), and \(\varvec{\varPhi }\left( {{t_0}} \right) = \left( {{\eta _{lr}}\left( {{t_0}} \right) _{l,r = 1}^p} \right) \) is positive definite matrixes.

(C8) The distribution function \(F_{ij}\left( x \right) =p\left( {Y_{ij}} - \varvec{X}_i^\mathrm{T}\left( {{t_{ij}}} \right) \varvec{\beta } \left( {{t_{ij}}} \right) <x|t_{ij}\right) \) is absolutely continuous, with continuous densities \(f_{ij}\left( \cdot \right) \) uniformly bounded, and its first derivative uniformly bounded away from 0 and \(\infty \) at the points \(0, i=1,\ldots ,n, j=1,\ldots ,m_i\).

(C9) \(K_1\left( \cdot \right) \) is a symmetric density function with a bounded support in \({\mathscr {R}}\). For some constant \(C_K\ne 0\), \(K_1\left( \cdot \right) \) is a \(\nu \) th-order kernel, i.e., \(\int {{u^j}} K_1\left( u \right) \hbox {d}u = 1\) if \(j=0\); 0 if \(1 \le j \le \nu - 1\); \(C_K\) if \(j=\nu \), where \(\nu \ge 2\) is an integer.

(C10) The positive bandwidth parameter h satisfies \(n{h^{2 \nu }} \rightarrow 0\).

Lemma 1

Suppose that conditions (C2)–(C10) hold and that the bandwidth satisfies \(\sup {\lim _{n \rightarrow \infty }}N{h_1^5} < \infty \). If \({\varvec{\beta } \left( {{t_0}} \right) }\) is the true parameter, then \({\max _{1 \le i \le n}}\left\| {{ Z_i}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } \right\| = {o_p}\left( {\sqrt{Nh_1} } \right) \) and \({\max _{1 \le i \le n}}\left\| {{ Z_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } \right\| = {o_p}\left( {\sqrt{Nh_1} } \right) \), where \(\left\| \cdot \right\| \) is the Euclidean norm.

Proof

The proof of Lemma 1 is omitted since it is similar to the proof of Lemma A.1 in Xue and Zhu (2007). \(\square \)

Lemma 2

Suppose that conditions (C1)–(C8) hold, we have

$$\begin{aligned} \sqrt{Nh_1} \left( {\hat{\varvec{ \beta }} \left( {{t_0};h_1} \right) - \varvec{\beta } \left( {{t_0}} \right) - \varvec{B}\left( {{t_0}} \right) } \right) \mathop \rightarrow \limits ^d N\left( {\varvec{0},\bar{\varvec{ D}}\left( {{t_0}} \right) } \right) , \end{aligned}$$

where \(\bar{\varvec{D}}\left( {{t_0}} \right) = {\left( {{f_T}\left( {{t_0}} \right) } {{\bar{f}}}\left( 0 \right) \right) ^{ - 2}}{\upsilon ^2}\left( {{t_0}} \right) {\varvec{\varPhi }^{ - 1}}\left( {{t_0}} \right) \) and \({{\bar{f}}}\left( 0 \right) =\mathop {\lim }\nolimits _{n \rightarrow \infty } {N^{ - 1}}\sum \nolimits _{i = 1}^n {\sum \nolimits _{j = 1}^{{m_i}} {{f_{ij}}\left( 0 \right) } }\), \(\varvec{B}\left( {{t_0}} \right) \) and \(\varvec{\varPhi }\left( {{t_0}} \right) \) are defined in Theorem 3 and condition (C7), \({\upsilon ^2}\left( {{t_0}} \right) = \tau \left( 1-\tau \right) {f_T}\left( {{t_0}} \right) {\nu _0} + \kappa {h_0}{\rho _\varepsilon }\left( {{t_0}} \right) f_T^2\left( {{t_0}} \right) ,\)\( {h_0}\) and \(\kappa \) are defined by conditions (C1) and (C2).

Proof

Because

$$\begin{aligned}&\sum \limits _{i = 1}^n {\varvec{X}_i^\mathrm{T}{\varvec{\mathrm{K}}_i}\left( {{t};{h_1}} \right) {\psi _\tau }\left( {{\varvec{Y}_i-\varvec{X}_i\varvec{\beta }(t)}} \right) }\nonumber \\&\quad = \sum \limits _{i = 1}^{n}\sum \limits _{j = 1}^{{m_i}} {{\psi _\tau }\left( {{Y_{ij}} - \varvec{X}_i^\mathrm{T}\left( {{t_{ij}}} \right) \varvec{\beta } \left( t \right) } \right) {\varvec{X}_i}\left( {{t_{ij}}} \right) {K_{h_1}}\left( {t - {t_{ij}}} \right) } \nonumber \\&\quad = \sum \limits _{i = 1}^{n}\sum \limits _{j = 1}^{{m_i}} {{\psi _\tau }\left( {{\varepsilon _i}\left( {{t_{ij}}} \right) + \varvec{X}_i^\mathrm{T}\left( {{t_{ij}}} \right) \varvec{\beta } \left( {{t_{ij}}} \right) - \varvec{X}_i^\mathrm{T}\left( {{t_{ij}}} \right) \varvec{\beta } \left( t \right) } \right) {\varvec{X}_i}\left( {{t_{ij}}} \right) {K_{h_1}}\left( {t - {t_{ij}}} \right) } \nonumber \\&\quad = \sum \limits _{i = 1}^{n}\sum \limits _{j = 1}^{{m_i}} {{\varvec{X}_i}\left( {{t_{ij}}} \right) {K_{h_1}}\left( {t - {t_{ij}}} \right) \left[ {\tau - I\left\{ {{\varepsilon _i}\left( {{t_{ij}}} \right)< \varvec{X}_i^\mathrm{T}\left( {{t_{ij}}} \right) \left( {\varvec{\beta } \left( t \right) - \varvec{\beta } \left( {{t_{ij}}} \right) } \right) } \right\} } \right] } \nonumber \\&\quad = \sum \limits _{i = 1}^n {\sum \limits _{j = 1}^{{m_i}} } {\varvec{X}_i}\left( {{t_{ij}}} \right) {K_{{h_1}}}\left( {t - {t_{ij}}} \right) \left[ {{\psi _\tau }\left( {{\varepsilon _i}\left( {{t_{ij}}} \right) } \right) + I\left\{ {{\varepsilon _i}\left( {{t_{ij}}} \right)< 0} \right\} } \right. \nonumber \\&\quad \left. - I\left\{ {{\varepsilon _i}\left( {{t_{ij}}} \right) < \varvec{X}_i^\mathrm{T}\left( {{t_{ij}}} \right) \left( {\varvec{\beta } \left( t \right) - \varvec{\beta } \left( {{t_{ij}}} \right) } \right) } \right\} \right] \nonumber \\&\quad = \sum \limits _{i = 1}^{n}\sum \limits _{j = 1}^{{m_i}} {{\varvec{X}_i}\left( {{t_{ij}}} \right) {K_{h_1}}\left( {t - {t_{ij}}} \right) {\psi _\tau }\left( {{\varepsilon _i}\left( {{t_{ij}}} \right) } \right) } \nonumber \\&\qquad - \sum \limits _{i = 1}^{n}\sum \limits _{j = 1}^{{m_i}} {{\varvec{X}_i}\left( {{t_{ij}}} \right) {K_{h_1}}\left( {t - {t_{ij}}} \right) {\varUpsilon _i}\left( {{t_{ij}}} \right) } \nonumber \\&\quad \buildrel \varDelta \over = \varvec{I} - \varvec{II} , \end{aligned}$$
(A.1)

where \({\varUpsilon _i}\left( {{t_{ij}}} \right) = \left[ {I\left\{ {{\varepsilon _i}\left( {{t_{ij}}} \right)< \varvec{X}_i^\mathrm{T}\left( {{t_{ij}}} \right) \left( {\varvec{\beta } \left( t \right) - \varvec{\beta } \left( {{t_{ij}}} \right) } \right) } \right\} - I\left\{ {{\varepsilon _i}\left( {{t_{ij}}} \right) < 0} \right\} } \right] \). In addition, we define

By condition (C8), we have

$$\begin{aligned} \varvec{I}I_1= & {} \sum \limits _{i = 1}^{n}\sum \limits _{j = 1}^{{m_i}} {{\varvec{X}_i}\left( {{t_{ij}}} \right) {K_{h_1}}\left( {t - {t_{ij}}} \right) \left[ {{F_{ij}}\left( {\varvec{X}_i^\mathrm{T}\left( {{t_{ij}}} \right) \left( {\varvec{\beta } \left( t \right) - \varvec{\beta } \left( {{t_{ij}}} \right) } \right) } \right) - {F_{ij}}\left( {0} \right) } \right] } \nonumber \\= & {} \sum \limits _{i = 1}^{n}\sum \limits _{j = 1}^{{m_i}}{\varvec{X}_i}\left( {{t_{ij}}} \right) {K_{h_1}}\left( {t - {t_{ij}}} \right) {f_{ij}} \left( 0 \right) \left\{ {1 + {o}\left( 1 \right) } \right\} \varvec{X}_i^\mathrm{T}\left( {{t_{ij}}} \right) \nonumber \\&\times \left( {\varvec{\beta } \left( t \right) - \varvec{\beta } \left( {{t_{ij}}} \right) } \right) . \end{aligned}$$
(A.2)

By Cauchy–Schwartz inequality and conditions (C6) and (C8), for all \(\varvec{\zeta }\in {{\mathscr {R}}^p}\) with \(\varvec{\zeta }^\mathrm{T}\varvec{\zeta }=1\),

$$\begin{aligned} E{\left( {{\varvec{\zeta }^\mathrm{T}}\varvec{II}_2} \right) ^2}= & {} \sum \limits _{i = 1}^n {E{{\left\| {{\varvec{\zeta }^\mathrm{T}}\varvec{X}_i^\mathrm{T}{\varvec{\mathrm{K}}_i}\left( {t;{h_1}} \right) \left[ {{\varvec{\varUpsilon } _i} - E\left( {{\varvec{\varUpsilon } _i}} \right) } \right] } \right\| }^2}} \nonumber \\\le & {} \sum \limits _{i = 1}^n {\varvec{\zeta }^\mathrm{T}}\varvec{X}_i^\mathrm{T}{\varvec{\mathrm{K}}_i}\left( {t;{h_1}} \right) {\varvec{\mathrm{K}}_i}\left( {t;{h_1}} \right) {\varvec{X}_i}\varvec{\zeta }\nonumber \\&\times E\left\{ {{{\left( {{\varvec{\varUpsilon } _i} - E\left( {{\varvec{\varUpsilon } _i}} \right) } \right) }^\mathrm{T}}\left( {{\varvec{\varUpsilon } _i} - E\left( {{\varvec{\varUpsilon } _i}} \right) } \right) } \right\} \nonumber \\\le & {} C\max \left\{ {\left| {\varvec{X}_{i}^\mathrm{T} \left( t_{ij} \right) \left( {\varvec{\beta } \left( t \right) - \varvec{\beta } \left( {{t_{ij}}} \right) } \right) } \right| } \right\} \nonumber \\&\times \sum \limits _{i = 1}^n {{\varvec{\zeta }^\mathrm{T}}\varvec{X}_i^\mathrm{T}{\varvec{\mathrm{K}}_i}\left( {t;{h_1}} \right) {\varvec{\mathrm{K}}_i}\left( {t;{h_1}} \right) {\varvec{X}_i}\varvec{\zeta }} \nonumber \\= & {} o\left( Nh_1 \right) , \end{aligned}$$
(A.3)

where \(\varvec{\varUpsilon } _i=(\varUpsilon _i\left( {{t_{i1}}} \right) ,\ldots ,\varUpsilon _i\left( {{t_{im_i}}} \right) )^\mathrm{T}\). According to McCullagh (1983), we have

$$\begin{aligned}&\varvec{{\hat{\beta }}} \left( {{t_0};{h_1}} \right) - \varvec{\beta } \left( {{t_0}} \right) \nonumber \\&\quad = {\left\{ {\frac{1}{Nh_1}\sum \limits _{i = 1}^n {\varvec{X}_i^\mathrm{T}{\varvec{\mathrm{K}}_i}\left( {{t_0};{h_1}} \right) {\varvec{\varLambda }_i}{\varvec{X}_i}} } \right\} ^{ - 1}}\nonumber \\&\qquad \times \left\{ {\frac{1}{Nh_1}\sum \limits _{i = 1}^n {\varvec{X}_i^\mathrm{T}{\varvec{\mathrm{K}}_i}\left( {{t_0};{h_1}} \right) {\psi _\tau }\left( {{\varvec{Y}_i-\varvec{X}_i \varvec{\beta }(t_0)}} \right) } } \right\} \nonumber \\&\qquad +\, {o_p}\left( (Nh_1)^{-1/2} \right) , \end{aligned}$$
(A.4)

where \(\varvec{\varLambda }_i=\hbox {diag}\left( {{f_{i1}}\left( 0 \right) ,\ldots ,{f_{i{m_i}}}\left( 0 \right) } \right) \). Then, by the law of large numbers together with (A.1)–(A.4), we have

$$\begin{aligned} {\varvec{{\hat{\beta }}} \left( {{t_0};{h_1}} \right) - \varvec{\beta } \left( {{t_0}} \right) } = f_T^{ - 1}\left( {{t_0}} \right) {\bar{ f}^{-1}}\left( 0 \right) {\varvec{\varPhi }^{ - 1}} \left( {{t_0}} \right) \varvec{{\hat{R}}}\left( {{t_0};{h_1}} \right) +{o_p}\left( (Nh_1)^{-1/2} \right) . \nonumber \\ \end{aligned}$$
(A.5)

where \(\varvec{{\hat{R}}}\left( {{t_0};{h_1}} \right) = \frac{1}{{Nh_1}}\sum \nolimits _{i = 1}^n \big \{{\varvec{X}_i^\mathrm{T}{\varvec{\varvec{\mathrm{K}}}_i}\left( {{t_0};{h_1}} \right) {\psi _\tau }\left( {{\varvec{\varepsilon } _i}} \right) + } \varvec{X}_i^\mathrm{T}{\varvec{\mathrm{K}}_i}\left( {{t_0};{h_1}} \right) {\varvec{\varLambda }_i}{\varvec{X}_i}\left[ \varvec{\beta } \left( {{t_{ij}}} \right) \right. \left. - \varvec{\beta } \left( {{t_0}} \right) \right] \big \}.\) It can be shown that the lth element of \(\varvec{{\hat{R}}}\left( {{t_0};{h_1}} \right) \) can be written as

$$\begin{aligned} {{{\hat{R}}}_{l}}\left( {{t_0};{h_1}} \right) = \frac{1}{{Nh_1}}\sum \limits _{i = 1}^n {{\varphi _{il}} \left( {{t_0};{h_1}} \right) } , \end{aligned}$$
(A.6)

where \({\varphi _{il}}\left( {{t_0};{h_1}} \right) = \sum \nolimits _{j = 1}^{{m_i}} {{\xi _{il}}\left( {{t_0},{t_{ij}}} \right) {K_{{h_1}}}\left( {{t_0} - {t_{ij}}} \right) } \) and

$$\begin{aligned} {\xi _{il}}\left( {{t_0},{t_{ij}}} \right) = {X_{il}}\left( {{t_{ij}}} \right) {\psi _\tau }\left( {{\varepsilon _i}\left( {{t_{ij}}} \right) } \right) + {X_{il}}\left( {{t_{ij}}} \right) {f_{ij}}\left( 0 \right) \sum \limits _{r = 1}^p {{X_{ir}}\left( {{t_{ij}}} \right) \left[ {{\beta _r}\left( {{t_{ij}}} \right) - {\beta _r}\left( {{t_0}} \right) } \right] }. \end{aligned}$$

Then (A.6) implies that \(\varvec{{\hat{R}}}\left( {{t_0};{h_1}} \right) \) is a sum of independent vectors

$$\begin{aligned} \varvec{{\hat{R}}}\left( {{t_0};{h_1}} \right) = \frac{1}{{Nh_1}}\sum \limits _{i = 1}^n \varvec{\varPsi }_i\left( {{t_0};{h_1}} \right) , \end{aligned}$$

where \(\varvec{\varPsi }_i\left( {{t_0};{h_1}} \right) ={\left( {{\varphi _{i1}}\left( {{t_0};{h_1}} \right) ,\ldots ,{\varphi _{ip}}\left( {{t_0};{h_1}} \right) } \right) ^\mathrm{T}}\). Because \(E\left( {{\psi _\tau }\left\{ {{\varepsilon _i}\left( {{t_{ij}}} \right) } \right\} } \right) = 0\) and the design points \(t_{ij}, i=1,\ldots ,n, j=1,\ldots ,m_i\) are independent, direct calculation and the change of variables show that

$$\begin{aligned} E\left( {{\varphi _{il}}\left( {{t_0};{h_1}} \right) } \right)= & {} \sum \limits _{j = 1}^{{m_i}} {\int {E\left( {{\xi _{il}}\left( {{t_0},{t_{ij}}} \right) \left| {{t_{ij}} = v} \right. } \right) K\left( {\frac{{{t_0} - v}}{{{h_1}}}} \right) {f_T}\left( v \right) \hbox {d}v} } \\= & {} \sum \limits _{j = 1}^{{m_i}} f_{ij}\left( 0\right) {h_1}\sum \limits _{r = 1}^p \int \left[ {{\beta _r}\left( {{t_0} - {h_1}u} \right) - {\beta _r}\left( {{t_0}} \right) } \right] \\&\times \eta _{lr}\left( {{t_0} - {h_1}u} \right) {f_T}\left( {{t_0} - {h_1}u} \right) K\left( u \right) \hbox {d}u \\= & {} \sum \limits _{j = 1}^{{m_i}} {f_{ij}}\left( 0 \right) {\mu _2}h_1^3\sum \limits _{r = 1}^p \left[ {{{{\dot{\beta }} }_r}\left( {{t_0}} \right) {{{\dot{\eta }} }_{lr}}\left( {{t_0}} \right) {f_T}\left( {{t_0}} \right) } \right. \\&\left. + \frac{1}{2}{{\ddot{\beta }}_r}\left( {{t_0}} \right) {\eta _{lr}}\left( {{t_0}} \right) {f_T}\left( {{t_0}} \right) + {{{\dot{\beta }}}_r}\left( {{t_0}} \right) {\eta _{lr}}\left( {{t_0}} \right) {{\dot{f}}_T}\left( {{t_0}} \right) \right] \left\{ {1 + o\left( 1 \right) }\right\} . \end{aligned}$$

Then, by (A.6) and assumptions (C1), (C3) and (C6), and taking the Taylor expansions on the right side of the foregoing equation, we have

$$\begin{aligned} E\left( {{{{\hat{R}}}_l}\left( {{t_0};{h_1}} \right) } \right)= & {} \frac{1}{{N{h_1}}}\sum \limits _{i = 1}^n {E\left( {{\varphi _{il}}\left( {{t_0};{h_1}} \right) } \right) } \rightarrow {\mu _2}h_1^2{\bar{ f}}\left( 0 \right) \sum \limits _{r = 1}^p \left[ {{\dot{\beta }} _r}\left( {{t_0}} \right) {{\dot{\eta }} _{lr}}\left( {{t_0}} \right) {f_T}\left( {{t_0}} \right) \right. \\&\left. + \frac{1}{2}{\ddot{\beta }_r}\left( {{t_0}} \right) {\eta _{lr}}\left( {{t_0}} \right) {f_T}\left( {{t_0}} \right) + {{\dot{\beta }} _r}\left( {{t_0}} \right) {\eta _{lr}}\left( {{t_0}} \right) {\dot{f}_T}\left( {{t_0}} \right) \right] . \end{aligned}$$

Therefore,

$$\begin{aligned} E\left( {\varvec{{\hat{\beta }}} \left( {{t_0};{h_1}} \right) - \varvec{\beta } \left( {{t_0}} \right) } \right) = f_T^{ - 1}\left( {{t_0}} \right) {\varvec{\varPhi }^{ - 1}} \left( {{t_0}} \right) \varvec{b}\left( {{t_0}} \right) =\varvec{B}\left( {{t_0}} \right) . \end{aligned}$$

For the covariance of \(\sqrt{Nh_1} \varvec{{\hat{R}}}\left( {{t_0};{h_1}} \right) \), because

$$\begin{aligned}&\hbox {Cov}\left[ \sqrt{Nh_1} {{{{\hat{R}}}_l}\left( {{t_0};{h_1}} \right) ,\sqrt{Nh_1} {{{\hat{R}}}_r}\left( {{t_0};{h_1}} \right) } \right] \nonumber \\&\qquad = E\left[ \sqrt{Nh_1} {{{{\hat{R}}}_l}\left( {{t_0};{h_1}} \right) \sqrt{Nh_1} {{{\hat{R}}}_r}\left( {{t_0};{h_1}} \right) } \right] \nonumber \\&\qquad \quad - E\left[ \sqrt{Nh_1} {{{{\hat{R}}}_l}\left( {{t_0};{h_1}} \right) } \right] E\left[ \sqrt{Nh_1} {{{{\hat{R}}}_r}\left( {{t_0};{h_1}} \right) } \right] , \end{aligned}$$
(A.7)

and

$$\begin{aligned}&E\left[ {\sqrt{Nh_1} {{{\hat{R}}}_l}\left( {{t_0};{h_1}} \right) \sqrt{Nh_1} {{{\hat{R}}}_r}\left( {{t_0};{h_1}} \right) } \right] \nonumber \\&\quad = E\left\{ {\left[ {\frac{1}{{\sqrt{Nh_1} }}\sum \limits _{i = 1}^n {{\varphi _{il}}\left( {{t_0};{h_1}} \right) } } \right] \left[ {\frac{1}{{\sqrt{Nh_1} }}\sum \limits _{i = 1}^n {{\varphi _{ir}}\left( {{t_0};{h_1}} \right) } } \right] } \right\} \nonumber \\&\quad = \frac{1}{{Nh_1}} \sum \limits _{i = 1}^n E\left[ {{\varphi _{il}}\left( {{t_0};{h_1}} \right) {\varphi _{ir}} \left( {{t_0};{h_1}} \right) } \right] \nonumber \\&\qquad + \frac{1}{{Nh_1}}\sum \limits _{{i_1} \ne {i_2}} {E\left[ {{\varphi _{{i_1}l}} \left( {{t_0};{h_1}} \right) {\varphi _{{i_2}r}}\left( {{t_0};{h_1}} \right) } \right] } . \end{aligned}$$
(A.8)

For the first term on the right side of (A.8), we consider the further decomposition

$$\begin{aligned} {\varphi _{il}}\left( {{t_0};{h_1}} \right) {\varphi _{ir}}\left( {{t_0};{h_1}} \right)= & {} \sum \limits _{j = 1}^{{m_i}} {{\xi _{il}}\left( {{t_0},{t_{ij}}} \right) {\xi _{ir}}\left( {{t_0},{t_{ij}}} \right) {{\left[ {K\left( {\frac{{{t_0} - {t_{ij}}}}{{{h_1}}}} \right) } \right] }^2}} \nonumber \\&\!+\! \sum \limits _{{{j}_1} \ne {j_2}} {{\xi _{il}}\left( {{t_0},{t_{i{j_1}}}} \right) {\xi _{ir}} \left( {{t_0},{t_{i{j_2}}}} \right) K\left( {\frac{{{t_0} \!-\! {t_{i{j_1}}}}}{{{h_1}}}} \right) K\left( {\frac{{{t_0} \!-\! {t_{i{j_2}}}}}{{{h_1}}}} \right) }\nonumber \\ \end{aligned}$$
(A.9)

The change of variables, and the fact that \({{\psi _\tau }\left\{ {{\varepsilon _i}\left( {{t_{ij}}} \right) } \right\} }\) is a mean 0 and independent of \(\varvec{X}_i\left( t_{ij} \right) \) , it can be shown by direct calculation that, as \(n\rightarrow \infty \) and \(v \rightarrow {t_0}\),

$$\begin{aligned}&E\left( {{\xi _{il}}\left( {{t_0},{t_{ij}}} \right) {\xi _{ir}}\left( {{t_0},{t_{ij}}} \right) \left| {{t_{ij}} = v} \right. } \right) \\&\quad = \tau \left( 1-\tau \right) E\left( {{X_{il}}\left( {{t_{ij}}} \right) {X_{ir}}\left( {{t_{ij}}} \right) \left| {{t_{ij}} = v} \right. } \right) \\&\qquad + \sum \limits _{c = 1}^p {{{\left[ {{\beta _c}\left( v \right) - {\beta _c}\left( {{t_0}} \right) } \right] }^2}f_{ij}^2\left( 0 \right) E\left( {{X_{il}}\left( {{t_{ij}}} \right) {X_{ir}}\left( {{t_{ij}}} \right) X_{ic}^2\left( {{t_{ij}}} \right) \left| {{t_{ij}} = v} \right. } \right) } \\&\qquad + \sum \limits _{{c_1} \ne {c_2}} \left[ {{\beta _{{c_1}}}\left( v \right) - {\beta _{{c_1}}}\left( {{t_0}} \right) } \right] \left[ {{\beta _{{c_2}}}\left( v \right) - {\beta _{{c_2}}}\left( {{t_0}} \right) } \right] f_{ij}^2\left( 0 \right) \\&\qquad \times E\left( {{X_{il}}\left( {{t_{ij}}} \right) {X_{ir}}\left( {{t_{ij}}} \right) {X_{i{c_1}}}\left( {{t_{ij}}} \right) {X_{i{c_2}}}\left( {{t_{ij}}} \right) \left| {{t_{ij}} = v} \right. } \right) \\&\qquad \rightarrow \tau \left( 1-\tau \right) {\eta _{lr}}\left( {{t_0}} \right) . \\ \end{aligned}$$

Then, we have

$$\begin{aligned}&E\left[ {\sum \limits _{j = 1}^{{m_i}} {{\xi _{il}}\left( {{t_0},{t_{ij}}} \right) {\xi _{ir}}\left( {{t_0},{t_{ij}}} \right) {K^2}\left( {\frac{{{t_0} - {t_{ij}}}}{{{h_1}}}} \right) } } \right] \nonumber \\&\quad = \sum \limits _{j = 1}^{{m_i}} \int {\left[ {E\left( {{\xi _{il}}\left( {{t_0},{t_{ij}}} \right) {\xi _{ir}}\left( {{t_0},{t_{ij}}} \right) \left| {{t_{ij}} = v} \right. } \right) {K^2}\left( {\frac{{{t_0} - v}}{{{h_1}}}} \right) } \right] {f_T}\left( v \right) \hbox {d}v} \nonumber \\&\quad = m_i {{h_1}\tau \left( 1-\tau \right) {\eta _{lr}}\left( {{t_0}} \right) {\nu _0}{f_T}\left( {{t_0}} \right) }+o(m_i {h_1}). \end{aligned}$$
(A.10)

Similarly, it can be shown by direct calculation that as \(n \rightarrow \infty ,{v_1} \rightarrow {t_0},{v_2} \rightarrow {t_0}\)

$$\begin{aligned}&E\left( {{\xi _{il}}\left( {{t_0},{t_{i{j_1}}}} \right) {\xi _{ir}}\left( {{t_0},{t_{i{j_2}}}} \right) \left| {{t_{i{j_1}}} = {v_1},{t_{i{j_2}}} = {v_2}} \right. } \right) \\&\quad = {\rho _\varepsilon }\left( {{v_1},{v_2}} \right) E\left( {{X_{il}}\left( {{t_{i{j_1}}}} \right) {X_{ir}}\left( {{t_{i{j_2}}}} \right) \left| {{t_{i{j_1}}} = {v_1},{t_{i{j_2}}} = {v_2}} \right. } \right) \\&\qquad + \sum \limits _{c = 1}^p {\left[ {{\beta _c}\left( {{v_1}} \right) - {\beta _c}\left( {{t_0}} \right) } \right] \left[ {{\beta _c}\left( {{v_2}} \right) - {\beta _c}\left( {{t_0}} \right) } \right] f_{ij}^2\left( 0 \right) } \\&\qquad \times E\left( {{X_{il}}\left( {{t_{i{j_1}}}} \right) {X_{ir}}\left( {{t_{i{j_2}}}} \right) {X_{ic}}\left( {{t_{i{j_1}}}} \right) {X_{ic}}\left( {{t_{i{j_2}}}} \right) \left| {{t_{i{j_1}}} = {v_1},{t_{i{j_2}}} = {v_2}} \right. } \right) \\&\qquad + \sum \limits _{{c_1} \ne {c_2}} {\left[ {{\beta _{{c_1}}}\left( {{v_1}} \right) - {\beta _{{c_1}}}\left( {{t_0}} \right) } \right] \left[ {{\beta _{{c_2}}}\left( {{v_2}} \right) - {\beta _{{c_2}}}\left( {{t_0}} \right) } \right] f_{ij}^2\left( 0 \right) } \\&\qquad \times E\left( {{X_{il}}\left( {{t_{i{j_1}}}} \right) {X_{ir}}\left( {{t_{i{j_2}}}} \right) {X_{i{c_1}}}\left( {{t_{i{j_1}}}} \right) {X_{i{c_2}}}\left( {{t_{i{j_2}}}} \right) \left| {{t_{i{j_1}}} = {v_1},{t_{i{j_2}}} = {v_2}} \right. } \right) \\&\qquad \rightarrow {\rho _\varepsilon }\left( {{t_0}} \right) {\eta _{lr}}\left( {{t_0}} \right) . \end{aligned}$$

Therefore, the expectation of the second term on the right side of (A.9) is

$$\begin{aligned}&E\left[ {\sum \limits _{{j_1} \ne {j_2}} {{\xi _{il}}\left( {{t_0},{t_{i{j_1}}}} \right) {\xi _{ir}}\left( {{t_0},{t_{i{j_2}}}} \right) K\left( {\frac{{{t_0} - {t_{i{j_1}}}}}{{{h_1}}}} \right) K\left( {\frac{{{t_0} - {t_{i{j_2}}}}}{{{h_1}}}} \right) } } \right] \nonumber \\&\quad = \sum \limits _{{j_1} \ne {j_2}} {\left\{ {\int \int {E\left( {{\xi _{il}}\left( {{t_0},{t_{i{j_1}}}} \right) {\xi _{ir}}\left( {{t_0},{t_{i{j_2}}}} \right) \left| {{t_{i{j_1}}} = {v_1},{t_{i{j_2}}} = {v_2}} \right. } \right) } } \right. } \nonumber \\&\qquad \times \left. {K\left( {\frac{{{t_0} - {v_1}}}{{{h_1}}}} \right) K\left( {\frac{{{t_0} - {v_2}}}{{{h_1}}}} \right) {f_T}\left( {{v_1}} \right) {f_T}\left( {{v_2}} \right) \hbox {d}{v_1}\hbox {d}{v_2}} \right\} \nonumber \\&\quad = {m_i}\left( {{m_i} - 1} \right) h_1^2{\rho _\varepsilon }\left( {{t_0}} \right) {\eta _{lr}}\left( {{t_0}} \right) f_T^2\left( {{t_0}} \right) + o\left( {{m_i}\left( {{m_i} - 1} \right) h_1^2} \right) . \end{aligned}$$
(A.11)

Combining (A.9)–(A.11), it follows immediately that when n is sufficiently large

$$\begin{aligned}&\frac{1}{{N{h_1}}}\sum \limits _{i = 1}^n {E\left[ {{\varphi _{il}}\left( {{t_0};{h_1}} \right) {\varphi _{ir}}\left( {{t_0};{h_1}} \right) } \right] } \nonumber \\&\quad = \tau \left( 1-\tau \right) {\eta _{lr}}\left( {{t_0}} \right) {\nu _0}{f_T}\left( {{t_0}} \right) + {N^{ - 1}}{h_1}\left( {\sum \limits _{i = 1}^n {m_i^2 - N} } \right) {\rho _\varepsilon }\left( {{t_0}} \right) {\eta _{lr}}\left( {{t_0}} \right) f_T^2\left( {{t_0}} \right) \nonumber \\&\qquad + o\left( {{N^{ - 1}}{h_1}\left( {\sum \limits _{i = 1}^n {m_i^2 - N} } \right) } \right) +o\left( 1\right) \nonumber \\&\qquad \rightarrow \tau \left( 1-\tau \right) {\eta _{lr}}\left( {{t_0}} \right) {\nu _0}{f_T}\left( {{t_0}} \right) + \kappa {h_0} {\rho _\varepsilon }\left( {{t_0}} \right) {\eta _{lr}}\left( {{t_0}} \right) f_T^2\left( {{t_0}} \right) \end{aligned}$$
(A.12)

because \(h_1 = {N^{{{ - 1} \big / 5}}}{h_0}\) and \({\lim _{n \rightarrow \infty }}{N^{{{ - 6} \big / 5}}}\sum \nolimits _{i = 1}^n {m_i^2} = \kappa \), and it is easy to see that as \(n\rightarrow \infty \)

$$\begin{aligned} {N^{ - 1}}{h_1}\left( {\sum \limits _{i = 1}^n {m_i^2 - N} } \right) = {N^{{{ - 6} \big / 5}}}\left( {\sum \limits _{i = 1}^n {m_i^2 - N} } \right) {h_0} \rightarrow \kappa {h_0}. \end{aligned}$$

Similar to the proof of (A.13) in Wu et al. (1998), as \(n \rightarrow \infty \), we have

$$\begin{aligned}&\left| \frac{1}{{N{h_1}}}\sum \limits _{{i_1} \ne {i_2}} {E\left[ {{\varphi _{{i_1}l}}\left( {{t_0};{h_1}} \right) {\varphi _{{i_2}r}}\left( {{t_0};{h_1}} \right) } \right] }\right. \nonumber \\&\qquad \left. - E\left[ {\frac{1}{{\sqrt{N{h_1}} }}\sum \limits _{i = 1}^n {{\varphi _{il}}\left( {{t_0};{h_1}} \right) } } \right] E\left[ {\frac{1}{{\sqrt{N{h_1}} }}\sum \limits _{i = 1}^n {{\varphi _{ir}}\left( {{t_0};{h_1}} \right) } } \right] \right| \nonumber \\&\qquad \rightarrow 0. \end{aligned}$$
(A.13)

Based on (A.7), (A.8), (A.12) and (A.13), we have

$$\begin{aligned}&\hbox {Cov}\left[ {\sqrt{Nh_1} {{{\hat{R}}}_l}\left( {{t_0};{h_1}} \right) ,\sqrt{Nh_1} {{{\hat{R}}}_r}\left( {{t_0};{h_1}} \right) } \right] \\&\quad = \tau \left( 1-\tau \right) {\eta _{lr}}\left( {{t_0}} \right) {\nu _0}{f_T}\left( {{t_0}} \right) + \kappa {h_0}{\rho _\varepsilon }\left( {{t_0}} \right) {\eta _{lr}}\left( {{t_0}} \right) f_T^2\left( {{t_0}} \right) + o\left( 1 \right) .\\ \end{aligned}$$

The multivariate central limit theorem and the Slutsky’s theorem imply that

$$\begin{aligned} \sqrt{N{h_1}} \left( {\varvec{{\hat{\beta }}} \left( {{t_0};{h_1}} \right) -\varvec{\beta } \left( {{t_0}} \right) - \varvec{B}\left( {{t_0}} \right) } \right) \mathop \rightarrow \limits ^d N\left( {\varvec{0},{\upsilon ^2}\left( {{t_0}} \right) f_T^{ - 2}\left( {{t_0}} \right) {\bar{f}}^{ - 2}\left( 0 \right) \varvec{\varPhi }{{\left( {{t_0}} \right) }^{ - 1}}} \right) . \end{aligned}$$

Proof of Theorem 1

According to McCullagh (1983), we have

$$\begin{aligned}&\varvec{{\hat{\gamma }}} - {\varvec{\gamma } _0} = - {\left( {\frac{1}{n}\sum \limits _{i = 1}^n {\varvec{V}_i^\mathrm{T}} {\varvec{V}_i}} \right) ^{ - 1}}\frac{1}{n}\sum \limits _{i = 1}^n {\varvec{V}_i^\mathrm{T}} {\varvec{\tilde{e}}_i} + {o_p}\left( {{n^{{{ - 1} \big / 2}}}} \right) ,\\&\quad {\varvec{{\tilde{e}}}_i} =\varvec{L}_i^{ - 1}{\psi _\tau }\left( {{\varvec{{\hat{\varepsilon }} }_i}} \right) = \varvec{L}_i^{ - 1}\left[ {\tau \varvec{1}_{m_i} - I\left( {{\varvec{\varepsilon } _i}< 0} \right) + I\left( {{\varvec{\varepsilon } _i}< 0} \right) - I\left( {{\varvec{{\hat{\varepsilon }} }_i} < 0} \right) } \right] \\&\qquad \,\,= \varvec{e}_i - \varvec{L}_i^{ - 1}{\varvec{\varDelta }_i}, \\ \end{aligned}$$

where \(\varvec{1}_{m_i}\) is an \(m_i \times 1\) vector with all elements being 1 and \({\varvec{\varDelta }_i} = {\left( {{\varDelta _{i1}},\ldots ,{\varDelta _{i{m_i}}}} \right) ^\mathrm{T}}\) with \({\varDelta _{ij}} = \left[ {I\left\{ {{\varepsilon _i}\left( {{t_{ij}}} \right)< \varvec{X}_i^\mathrm{T}\left( {{t_{ij}}} \right) \left( {\varvec{{\hat{\beta }}} \left( {{t_{ij}};{h_1}} \right) - \varvec{\beta } \left( {{t_{ij}}} \right) } \right) } \right\} - I\left\{ {{\varepsilon _i}\left( {{t_{ij}}} \right) < 0} \right\} } \right] \). Because \(\varvec{e}_i\) are independent random variables with \(E\left( {{\varvec{e}_{i}}} \right) = \varvec{0}\) and \(\hbox {Cov}\left( {{\varvec{e}_{i}}} \right) = {\varvec{D}_{i}}\). In addition, \({\varDelta _{ij}}=O_p\left( {{1 \big / {\sqrt{N{h_1}} }}} +h_1^2\right) \) by Lemma 2. The multivariate central limit theorem and the Slutsky’s theorem imply that

$$\begin{aligned} \sqrt{n} \left( {\varvec{{\hat{\gamma }}} - {\varvec{\gamma }_0}} \right) \mathop \rightarrow \limits ^d N\left( {\varvec{0},{\varvec{\varXi }^{ - 1}}\varvec{\varGamma } {\varvec{\varXi }^{ - 1}}} \right) . \end{aligned}$$

\(\square \)

Proof of Theorem 2

Following the same line of argument of Theorem 1 of Fan and Yao (1998), we have

$$\begin{aligned} {{{\hat{d}}}^2}\left( t \right) - {d^2}\left( t \right) = \frac{1}{{Nh_2{f_T}\left( t \right) }}\sum \limits _{i = 1}^n {\sum \limits _{j = 1}^{{m_i}} {{K_{h_2}}\left( t- {{t_{ij}}} \right) \left\{ {{\hat{e}}_{ij}^2 - {d^2}\left( t \right) - {{\dot{d}}^2}\left( t \right) \left( {{t_{ij}} - t} \right) } \right\} } }. \end{aligned}$$

Note that

$$\begin{aligned} {\hat{e}}_{ij}^2= & {} {\left( {{\psi _\tau }\left( {{{{\hat{\varepsilon }} }_{ij}}} \right) - \sum \limits _{k = 1}^{j - 1} {{{{\hat{l}}}_{ijk}}{{{\hat{e}}}_{ik}}} } \right) ^2} \\= & {} {\left[ {{\psi _\tau }\left( {{\varepsilon _{ij}}} \right) - \left( {{\varDelta _{ij}} + \sum \limits _{k = 1}^{j - 1} {{{{\hat{l}}}_{ijk}}{{{\hat{e}}}_{ik}}} } \right) } \right] ^2} \\= & {} d_{ij}^2\varsigma _{ij}^2 + 2{d_{ij}}{\varsigma _{ij}}\left[ {\sum \limits _{k = 1}^{j - 1} {\left\{ {{l_{ijk}}\left( {{e_{ik}} - {{{\hat{e}}}_{ik}}} \right) + \left( {{l_{ijk}} - {{{\hat{l}}}_{ijk}}} \right) {{{\hat{e}}}_{ik}}} \right\} - {\varDelta _{ij}}} } \right] \\&+ {\left[ {\sum \limits _{k = 1}^{j - 1} {\left\{ {{l_{ijk}}\left( {{e_{ik}} - {{{\hat{e}}}_{ik}}} \right) + \left( {{l_{ijk}} - {{{\hat{l}}}_{ijk}}} \right) {{{\hat{e}}}_{ik}}} \right\} - {\varDelta _{ij}}} } \right] ^2}, \end{aligned}$$

where \({\varDelta _{ij}} \) is given in the proof of Theorem 1. It follows that

$$\begin{aligned} {{{\hat{d}}}^2}\left( t \right) - {d^2}\left( t \right) = {I_1} + {I_2} + {I_3} + {I_4}\left\{ 1+{o_p}\left( {{1}} \right) \right\} , \end{aligned}$$

where

$$\begin{aligned} {I_1}= & {} \frac{1}{{N{h_2}f_T\left( t \right) }}\sum \limits _{i = 1}^n {\sum \limits _{j = 1}^{{m_i}} {{K_{h_2}}\left( t- {{t_{ij}}}\right) \left\{ {{d^2}\left( {{t_{ij}}} \right) - {d^2}\left( t \right) - {{\dot{d}}^2}\left( t \right) \left( {{t_{ij}} - t} \right) } \right\} } } , \\ {I_2}= & {} \frac{1}{{N{h_2}f_T\left( t \right) }}\sum \limits _{i = 1}^n {\sum \limits _{j = 1}^{{m_i}} {{K_{h_2}}\left( t- {{t_{ij}}}\right) \left\{ {{d^2}\left( {{t_{ij}}} \right) \left( {\varsigma _{ij}^2 - 1} \right) } \right\} } } , \\ {I_3}= & {} 2\frac{1}{{N{h_2}{f_T}\left( t \right) }}\sum \limits _{i = 1}^n \sum \limits _{j = 1}^{{m_i}} {K_{{h_2}}}\left( t- {{t_{ij}}} \right) {d_{ij}}{\varsigma _{ij}}\\&\times \left[ {\sum \limits _{k = 1}^{j - 1} {\left\{ {{l_{ijk}}\left( {{e_{ik}} - {{{\hat{e}}}_{ik}}} \right) + \left( {{l_{ijk}} - {{{\hat{l}}}_{ijk}}} \right) {{{\hat{e}}}_{ik}}} \right\} - {\varDelta _{ij}}} }\right] , \\ {I_4}= & {} \frac{1}{{N{h_2}{f_T}\left( t \right) }}\sum \limits _{i = 1}^n {{{\sum \limits _{j = 1}^{{m_i}} {{K_{{h_2}}}\left( t- {{t_{ij}}} \right) \left[ {\sum \limits _{k = 1}^{j - 1} {\left\{ {{l_{ijk}}\left( {{e_{ik}} - {{{\hat{e}}}_{ik}}} \right) + \left( {{l_{ijk}}\! -\! {{{\hat{l}}}_{ijk}}} \right) {{{\hat{e}}}_{ik}}} \right\} \!-\! {\varDelta _{ij}}} } \right] } }^2}}. \\ \end{aligned}$$

It is easy to see that Theorem 2 follows directly from statements (a)–(d) below

  1. (a)

    \({I_1} = \frac{1}{2}{\mu _2}{h_2^2}{{\ddot{d}}^2}\left( t \right) + {o_p}\left( {{h_2^2}} \right) \),

  2. (b)

    \(\sqrt{Nh_2} {I_2}\mathop \rightarrow \nolimits ^d N\left( {0,\frac{{{\nu _0}}}{{f_T\left( t \right) }}\mathop {\lim }\nolimits _{n \rightarrow \infty } \frac{1}{N}\sum \nolimits _{i = 1}^n {\sum \nolimits _{j = 1}^{{m_i}} {E\left[ {{{\left( {\varsigma _{ij}^2 \!-\! 1} \right) }^2}\left| {{t_{ij}} \!=\! t} \right. } \right] {d^4}\left( t \right) } } } \right) \),

  3. (c)

    \({I_3} = {o_p}\left( { \frac{1}{{\sqrt{Nh_2} }}} \right) \),

  4. (d)

    \({I_4} = {o_p}\left( { \frac{1}{{\sqrt{Nh_2} }}} \right) \).

It is easy to see that (a) follows from a Taylor expansion. \(I_2\) is asymptotically normal with mean 0 and variance

$$\begin{aligned} \hbox {Var}\left( {{I_2}} \right) = \frac{{{\nu _0}}}{{{N^2}h_2f_T\left( t \right) }}\sum \limits _{i = 1}^n {\sum \limits _{j = 1}^{{m_i}} {E\left[ {{{\left( {\varsigma _{ij}^2 - 1} \right) }^2}\left| {{t_{ij}} = t} \right. } \right] {d^4}\left( t \right) } }. \end{aligned}$$

It follows from the definition of \(I_3\) that

$$\begin{aligned} {I_3}= & {} 2\frac{1}{{N{h_2}{f_T}\left( t \right) }}\sum \limits _{i = 1}^n {\sum \limits _{j = 1}^{{m_i}} {{K_{{h_2}}}\left( t- {{t_{ij}}} \right) {d_{ij}}{\varsigma _{ij}}\sum \limits _{k = 1}^{j - 1} {\left\{ {{l_{ijk}}\left( {{e_{ik}} - {{{\hat{e}}}_{ik}}} \right) + \left( {{l_{ijk}} - {{{\hat{l}}}_{ijk}}} \right) {{{\hat{e}}}_{ik}}} \right\} } } } \\&- 2\frac{1}{{N{h_2}{f_T}\left( t \right) }}\sum \limits _{i = 1}^n {\sum \limits _{j = 1}^{{m_i}} {{K_{{h_2}}}\left( t- {{t_{ij}}} \right) {d_{ij}}{\varsigma _{ij}}{\varDelta _{ij}}} } \\= & {} {I_{31}} + {I_{32}}. \\ \end{aligned}$$

By Lemma 2 and condition (C1), together with \(E\left( {{\varsigma _{ij}}|{t_{ij}}} \right) = 0\), \({{\hbox {Var}}}\left( {{\varsigma _{ij}}|{t_{ij}}} \right) = 1\), we have

$$\begin{aligned} {I_{31}} = {O_p}\left( {\frac{1}{{\sqrt{N{h_1}} }} + h_1^2} \right) {O_p}\left( {\frac{1}{{\sqrt{Nh_2} }}} \right) ={o_p}\left( {\frac{1}{{\sqrt{N{h_2}} }}} \right) , \end{aligned}$$

and

$$\begin{aligned} {I_{32}} = {O_p}\left( {\frac{1}{{\sqrt{N{h_1}} }} + h_1^2} \right) {O_p}\left( {\frac{1}{{\sqrt{Nh_2} }}} \right) ={o_p}\left( {\frac{1}{{\sqrt{N{h_2}} }}} \right) . \end{aligned}$$

Then \({I_{3}} = {o_p}\left( {{1 \big / {\sqrt{Nh_2} }}} \right) \). By the same arguments as proving \(I_3\), we have \({I_{4}} = {o_p}\left( {{1 \big / {\sqrt{Nh_2} }}} \right) \). Under the conditions \(Nh_2 \rightarrow \infty \) as \(n\rightarrow \infty \) and \(\lim {\sup _{n \rightarrow \infty }}N{h_2^5} < \infty \), then the proof of Theorem 2 is completed. \(\square \)

Proof of Theorem 3

Similar to the proof of Lemma 2, we have

$$\begin{aligned} \varvec{{\bar{\beta }}} \left( {{t_0};{h_1}} \right) - \varvec{\beta } \left( {{t_0}} \right)= & {} {\left\{ {\frac{1}{{N{h_1}}}\sum \limits _{i = 1}^n { \varvec{X}_i^\mathrm{T}{ \varvec{\mathrm{{K}}}_i}\left( {{t_0};{h_1}} \right) \varvec{{\hat{\varSigma }}} _i^{ - 1}{ \varvec{{\tilde{\varLambda }} }_i}{ \varvec{X}_i}} } \right\} ^{ - 1}} \\&\times \left\{ {\frac{1}{{N{h_1}}}\sum \limits _{i = 1}^n { \varvec{X}_i^\mathrm{T}{ \varvec{\mathrm{{K}}}_i}\left( {{t_0};{h_1}} \right) \varvec{{\hat{\varSigma }}} _i^{ - 1}{\psi _{\tau h} }\left( {{ \varvec{Y}_i} - { \varvec{X}_i} \varvec{\beta } \left( t_0 \right) } \right) } } \right\} \\&+\, {o_p}\left( {{{\left( {N{h_1}} \right) }^{{{ - 1} \big / 2}}}} \right) , \\ \end{aligned}$$

By the law of large numbers, we have

$$\begin{aligned} \frac{1}{{N{h_1}}}\sum \limits _{i = 1}^n { \varvec{X}_i^\mathrm{T}{ \varvec{\mathrm{{K}}}_i}\left( {{t_0};{h_1}} \right) \varvec{{\hat{\varSigma }}} _i^{ - 1}{ \varvec{{\tilde{\varLambda }} }_i}{ \varvec{X}_i}} \mathop \rightarrow \limits ^p { \varvec{\varOmega }_1}, \end{aligned}$$

where \(\varvec{{\tilde{\varLambda }} }_i=\hbox {diag}\left\{ {\frac{1}{h}K_1\left( {\frac{{{Y_{i1}} - \varvec{X}_i^\mathrm{T}\left( {{t_{i1}}} \right) \varvec{\beta }\, \left( t_0 \right) }}{h}} \right) ,\ldots ,\frac{1}{h}K_1\left( {\frac{{{Y_{i{m_i}}} - \varvec{X}_i^\mathrm{T}\left( {{t_{i{m_i}}}} \right) \varvec{\beta }\,\left( t_0 \right) }}{h}} \right) } \right\} .\) Using the conditions (C6), (C9) and (C10), similar to Lemma 3 (k) of Horowitz (1998), we obtain

$$\begin{aligned}&\frac{1}{{N{h_1}}}\sum \limits _{i = 1}^n {\varvec{X}_i^\mathrm{T}{\varvec{\mathrm{{K}}}_i}\left( {{t_0};{h_1}} \right) \varvec{{\hat{\varSigma }}} _i^{ - 1}{\psi _{\tau h}}\left( {{\varvec{Y}_i} - {\varvec{X}_i}\varvec{\beta } \left( {{t_0}} \right) } \right) } \\&\quad = \frac{1}{{N{h_1}}}\sum \limits _{i = 1}^n {\varvec{X}_i^\mathrm{T}{\varvec{\mathrm{{K}}}_i}\left( {{t_0};{h_1}} \right) \varvec{{\hat{\varSigma }}} _i^{ - 1}{\psi _\tau }\left( {{\varvec{Y}_i} - {\varvec{X}_i}\varvec{\beta } \left( {{t_0}} \right) } \right) } + {o_p}\left( {{{\left( {N{h_1}} \right) }^{{{ - 1} \big / 2}}}} \right) \\&\quad = \frac{1}{{N{h_1}}}\sum \limits _{i = 1}^n {\sum \limits _{j = 1}^{{m_i}} {\sum \limits _{j' = 1}^{{m_i}} {{\varvec{X}_i}\left( {{t_{ij}}} \right) {f_{ij'}}\left( 0 \right) K\left( {\frac{{t_0 - {t_{ij}}}}{{{h_1}}}} \right) {{{\hat{\sigma }} }^{jj'}}{\varvec{X}_i^\mathrm{T}}\left( {{t_{ij'}}} \right) \left[ {\varvec{\beta } \left( {{t_{ij'}}} \right) - \varvec{\beta } \left( {{t_0}} \right) } \right] } }} \\&\qquad + \frac{1}{{N{h_1}}}\sum \limits _{i = 1}^n {\sum \limits _{j = 1}^{{m_i}} {\sum \limits _{j' = 1}^{{m_i}} {{\varvec{X}_i}\left( {{t_{ij}}} \right) K\left( {\frac{{t_0 - {t_{ij}}}}{{{h_1}}}} \right) {{{\hat{\sigma }} }^{jj'}}{\psi _\tau }\left( {{\varepsilon _i}\left( {{t_{ij'}}} \right) } \right) } } } + {o_p}\left( {{{\left( {N{h_1}} \right) }^{{{ - 1} \big / 2}}}} \right) . \end{aligned}$$

Similar to the proof of Lemma 2, we have

$$\begin{aligned} E\left( {\varvec{{\bar{\beta }}} \left( {{t_0};{h_1}} \right) - \varvec{\beta } \left( {{t_0}} \right) } \right) = f_T^{ - 1}\left( {{t_0}} \right) {\varvec{\varPhi }^{ - 1}} \left( {{t_0}} \right) \varvec{b}\left( {{t_0}} \right) =\varvec{B}\left( {{t_0}} \right) , \end{aligned}$$

and

$$\begin{aligned} \hbox {Var}\left[ \frac{1}{\sqrt{N{h_1}}}\sum \limits _{i = 1}^n {\varvec{X}_i^\mathrm{T}{\varvec{\mathrm{{K}}}_i}\left( {{t_0};{h_1}} \right) \varvec{{\hat{\varSigma }}} _i^{ - 1}{\psi _{\tau h}}\left( {{\varvec{Y}_i} - {\varvec{X}_i}\varvec{\beta } \left( {{t_0}} \right) } \right) } \right] = {{\varvec{\varOmega }_2} + {\varvec{\varOmega }_3}} +o(1). \end{aligned}$$

The multivariate central limit theorem and the Slutsky’s theorem imply that

$$\begin{aligned} \sqrt{N{h_1}} \left( {\varvec{{\bar{\beta }}} \left( {{t_0};{h_1}} \right) -\varvec{\beta }\left( {{t_0}} \right) } -\varvec{B}\left( {{t_0}} \right) \right) \mathop \rightarrow \limits ^d N\left( {\varvec{0},\varvec{\varOmega }_1^{ - 1}\left( {{\varvec{\varOmega }_2} + {\varvec{\varOmega }_3}} \right) \varvec{\varOmega }_1^{ - 1}} \right) \end{aligned}$$

Therefore, we complete the proof of Theorem 3. \(\square \)

Proof of Theorem 4

Let \(\zeta \left( {\varvec{\beta } \left( {{t_0}} \right) } \right) = \frac{1}{{\sqrt{N{h_1}} }}\sum \nolimits _{i = 1}^n {{ \varvec{Z}_{ih}}} \left( {\varvec{\beta } \left( {{t_0}} \right) } \right) \). By Theorem 3, we have \(E\left[ {\zeta \left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } \right] = o(1)\) and \(\hbox {Cov}\left[ {\zeta \left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } \right] = {{\varvec{\varOmega }_2} + {\varvec{\varOmega }_3}}+o(1)\). By Lemma 1, we know that \(\zeta \left( {\varvec{\beta } \left( {{t_0}} \right) } \right) \) satisfies the conditions of the Cramer–Wold theorem (cf. Serfling 1980, theorem in sec. 1.5.2) and the Lindeberg condition (cf. Serfling 1980, theorem in sec. 1.9.2). Hence,

$$\begin{aligned} \frac{1}{{\sqrt{N{h_1}} }}\sum \limits _{i = 1}^n {{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } \mathop \rightarrow \limits ^d N\left( {\varvec{0}, {{\varvec{\varOmega }_2} + {\varvec{\varOmega }_3}}} \right) , \end{aligned}$$
(A.14)

and

$$\begin{aligned} \frac{1}{{N{h_1}}}\sum \limits _{i = 1}^n {{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) \varvec{Z}_{ih}^\mathrm{T} \left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } \mathop \rightarrow \limits ^p {{\varvec{\varOmega }_2} + {\varvec{\varOmega }_3}}. \end{aligned}$$
(A.15)

From (A.14), (A.15) and Lemma 1, and using the same arguments that are used in the proof of (2.14) in Owen (1990), we can prove that

$$\begin{aligned} \varvec{\lambda }= {O_p}\left( {{{\left( {N{h_1}} \right) }^{{{ - 1} \big / 2}}}} \right) , \end{aligned}$$
(A.16)

where \(\varvec{\lambda }\) is defined in (13). Applying the Taylor expansion to (14) and invoking (A.14)–(A.16) and Lemma 1, we obtain

$$\begin{aligned} l\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) = 2\sum \limits _{i = 1}^n {\left\{ {{\varvec{\lambda }^\mathrm{T}}{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) - {{{{\left[ {{\varvec{\lambda }^\mathrm{T}}{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } \right] }^2}} \big / 2}} \right\} } + {o_p}\left( 1 \right) . \end{aligned}$$
(A.17)

By (13), it follows that

$$\begin{aligned} 0= & {} \sum \limits _{i = 1}^n {\frac{{{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) }}{{1 + {\varvec{\lambda }^\mathrm{T}}{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) }}} \\= & {} \sum \limits _{i = 1}^n {{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } - \sum \limits _{i = 1}^n {{\varvec{\lambda }^\mathrm{T}}{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) {\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } \\&+ \sum \limits _{i = 1}^n {\frac{{{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) {{\left[ {{\varvec{\lambda }^\mathrm{T}}{\varvec{Z}_{ih}} \left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } \right] }^2}}}{{\left[ 1 + {\varvec{ \lambda }^\mathrm{T}}{\varvec{Z}_{ih}} \left( {\varvec{\beta } \left( {{t_0}} \right) } \right) \right] }}}. \end{aligned}$$

The application of Lemma 1 and (A.14)–(A.16) again yields

$$\begin{aligned} \sum \limits _{i = 1}^n {{{\left[ {{\varvec{\lambda }^\mathrm{T}}{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } \right] }^2}} = \sum \limits _{i = 1}^n {{\varvec{\lambda }^\mathrm{T}}{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } + {o_p}\left( 1 \right) , \end{aligned}$$
(A.18)

and

$$\begin{aligned} \varvec{\lambda }= {\left[ {\sum \limits _{i = 1}^n {{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) \varvec{Z}_{ih}^\mathrm{T}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } } \right] ^{ - 1}}\sum \limits _{i = 1}^n {{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } + {o_p}\left( {{{\left( {N{h_1}} \right) }^{{{ - 1} \big / 2}}}} \right) . \nonumber \\ \end{aligned}$$
(A.19)

Substituting (A.18) and (A.19) into (A.17), we obtain

$$\begin{aligned} l\left( {\varvec{\beta } \left( {{t_0}} \right) } \right)= & {} {\left[ {\frac{1}{{\sqrt{N{h_1}} }}\sum \limits _{i = 1}^n {{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } } \right] ^\mathrm{T}}{\left[ {\frac{1}{{N{h_1}}}\sum \limits _{i = 1}^n {{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) \varvec{Z}_{ih}^\mathrm{T}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } } \right] ^{ - 1}} \nonumber \\&\times \left[ {\frac{1}{{\sqrt{N{h_1}} }}\sum \limits _{i = 1}^n {{\varvec{Z}_{ih}}\left( {\varvec{\beta } \left( {{t_0}} \right) } \right) } } \right] + {o_p}\left( 1 \right) . \end{aligned}$$
(A.20)

Based on (A.14), (A.15) and (A.20), we can prove Theorem 4. \(\square \)

Proof of Corollary 1

Let \(\varvec{Z}_{ih}^{(2)}\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) } \right) = {{\partial {\varvec{Z}_{ih}}\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) } \right) } \big / {\partial {\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) }}\) and \(\varvec{{\tilde{\lambda }}} = \varvec{\lambda }\left( {\varvec{b}\left( {{t_0}} \right) , {\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) } \right) \), then \(\varvec{{\tilde{\lambda }}}\) and \({{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) }\) satisfy

$$\begin{aligned} {Q_1}\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) ,\varvec{{\tilde{\lambda }}} } \right) =\sum \limits _{i = 1}^n {\frac{{{\varvec{Z}_{ih}}\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) } \right) }}{{1 + {\varvec{{\tilde{\lambda }} }^\mathrm{T}}{\varvec{Z}_{ih}}\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) } \right) }}}=0, \end{aligned}$$

and

$$\begin{aligned} {Q_2}\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) ,\varvec{{\tilde{\lambda }} }} \right) = \sum \limits _{i = 1}^n {\frac{{{\varvec{{\tilde{\lambda }} }^\mathrm{T}}\varvec{Z}_{ih}^{(2)}\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) } \right) }}{{1 + {\varvec{{\tilde{\lambda }} }^\mathrm{T}}{\varvec{Z}_{ih}}\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) } \right) }}} =0. \end{aligned}$$

Expanding \({Q_1}\left( {\varvec{b}\left( {{t_0}} \right) \!,{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) \!,\varvec{{\tilde{\lambda }}} } \right) \) and \({Q_2}\left( {\varvec{b}\left( {{t_0}} \right) \!,{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) \!,\varvec{{\tilde{\lambda }}} } \right) \) at \(\left( {\varvec{b}\left( {{t_0}} \right) \!,{{ \varvec{\beta } }^{(2)}}\left( t_0 \right) ,0 } \right) \), we have

$$\begin{aligned} \varvec{{\tilde{\lambda }}} = \left( {\varvec{I} -\varvec{P}} \right) \varvec{\varSigma } _n^{ - 1}\varvec{{\tilde{Z}} }+ {o_p}\left( {{{\left( {N{h_1}} \right) }^{{{ - 1} \big / 2}}}} \right) , \end{aligned}$$

and

$$\begin{aligned} {\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) - {\varvec{\beta } ^{(2)}}\left( {{t_0}} \right) = - {\left( {{\varvec{{\tilde{Z}}}^{(2)T}}\varvec{\varSigma } _n^{ - 1}{\varvec{{\tilde{Z}}}^{(2)}}} \right) ^{ - 1}}{\varvec{{\tilde{Z}}}^{(2)T}}\varvec{\varSigma } _n^{ - 1}\varvec{{\tilde{Z}}} + {o_p}\left( {{{\left( {N{h_1}} \right) }^{{{ - 1} \big / 2}}}} \right) , \end{aligned}$$

where \({\varvec{{\tilde{Z}}}^{(2)}} = \sum \nolimits _{i = 1}^n {\varvec{Z}_{ih}^{(2)}\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{\beta } ^{(2)}}\left( {{t_0}} \right) } \right) }\), \(\varvec{P} = \varvec{\varSigma } _n^{ - 1}{\varvec{{\tilde{Z}}}^{(2)}}{\left( {{\varvec{{\tilde{Z}}}^{(2)T}}\varvec{\varSigma } _n^{ - 1}{\varvec{{\tilde{Z}}}^{(2)}}} \right) ^{ - 1}}{\varvec{{\tilde{Z}}}^{(2)T}}\), \(\varvec{{\tilde{Z}}} = \sum \nolimits _{i = 1}^n {{\varvec{Z}_{ih}}\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{\beta } ^{(2)}}\left( {{t_0}} \right) } \right) } \) and \({\varvec{\varSigma } _n} = \sum \nolimits _{i = 1}^n {\varvec{Z}_{ih}}\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{\beta } ^{(2)}}\left( {{t_0}} \right) } \right) \varvec{Z}_{ih}^\mathrm{T} \left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{\beta } ^{(2)}}\left( {{t_0}} \right) } \right) \). Because

$$\begin{aligned} l\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) } \right)= & {} 2\sum \limits _{i = 1}^n {\log \left\{ {1 + {\varvec{{\tilde{\lambda }} }^\mathrm{T}}{\varvec{Z}_{ih}}\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) } \right) } \right\} } \\= & {} 2\sum \limits _{i = 1}^n {{\varvec{{\tilde{\lambda }} }^\mathrm{T}}{\varvec{Z}_{ih}}\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) } \right) } \\&- \sum \limits _{i = 1}^n {{{\left\{ {{\varvec{{\tilde{\lambda }} }^\mathrm{T}}{\varvec{Z}_{ih}}\left( {\varvec{b}\left( {{t_0}} \right) ,{\varvec{{\tilde{\beta }} }^{(2)}}\left( t \right) } \right) } \right\} }^2} + {o_p}\left( 1 \right) } \\= & {} {\varvec{{\tilde{Z}}}^\mathrm{T}}\varvec{\varSigma } _n^{{{ - 1} \big / 2}}\left( {\varvec{I} - \varvec{\varSigma } _n^{{1 \big / 2}}\varvec{P}\varvec{\varSigma } _n^{{{ - 1} \big / 2}}} \right) \varvec{\varSigma } _n^{{{ - 1} \big / 2}}\varvec{{\tilde{Z}}} + {o_p}\left( 1 \right) . \end{aligned}$$

Similar to the proof of Theorem 4, we have \(\varvec{\varSigma } _n^{{{ - 1} \big / 2}}\varvec{{\tilde{Z}}}\mathop \rightarrow \limits ^d N\left( {\varvec{0},\varvec{I}} \right) \) and \({\varvec{\varSigma } _n^{{1 \big / 2}}\varvec{P}\varvec{\varSigma } _n^{{{ - 1} \big / 2}}}\) is symmetric and idempotent, with trace equal to \(p-p_1\). Because \(\varvec{Z}_{ih}\,l\left( {{\varvec{{\hat{\beta }} }^{(1)}}\left( t \right) ,{\varvec{{\hat{\beta }} }^{(2)}}\left( t \right) } \right) = 0\). Hence the empirical likelihood ratio statistic \({\bar{l}}\left( {\varvec{b}\left( {{t_0}} \right) } \right) \) converges to \(\chi _{p_1}^2\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Guo, C. & Wu, J. Smoothed empirical likelihood inference via the modified Cholesky decomposition for quantile varying coefficient models with longitudinal data. TEST 28, 999–1032 (2019). https://doi.org/10.1007/s11749-018-0616-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-018-0616-0

Keywords

Mathematics Subject Classification

Navigation