Skip to main content
Log in

Semi-parametric estimation and forecasting for exogenous log-GARCH models

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

Advanced computing and processing techniques have yielded abundant information for financial time series forecasting. It is, therefore, natural to ask for possible extensions of time series models to accommodate the wealth of information. In this article, we develop a new model for financial volatility estimation and forecasting by incorporating exogenous covariates in a semi-parametric log-GARCH model. With additional information, we gain an increased prediction power. We propose a quasi-maximum likelihood procedure via spline smoothing technique. Consistent estimators and asymptotic normality are obtained under mild regularity conditions. Simulation experiments provide strong evidence that corroborates the asymptotic theories. Additionally, an application to SPY index data demonstrates strong competitive advantage of our model comparing with GARCH(1,1) and log-GARCH(1,1) models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://finance.yahoo.com/q/hp?s=SPY+Historical+Prices.

  2. http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm.

References

  • Andersen TG, Bollerslev T (1998) Answering the skeptics: yes, standard volatility models do provide accurate forecasts. Int Econ Rev 39(4):885–905

    Article  MathSciNet  Google Scholar 

  • Baker SR, Bloom N, Davis SJ (2013) Measuring Economic Policy Uncertainty. Chicago Booth Research Paper 13–02, Stanford University, Department of Economics

  • Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31(3):307–327

    Article  MathSciNet  MATH  Google Scholar 

  • Bollerslev T, Engle RF, Nelson DB (1994) ARCH models. In: Handbook of Econometrics, vol 4, Elsevier

  • de Boor C (2001) A practical guide to splines. Springer, Berlin

    MATH  Google Scholar 

  • Bühlmann P, McNeil AJ (2002) An algorithm for nonparametric GARCH modelling. Comput Stat Data Anal 40(4):665–683

    Article  MATH  Google Scholar 

  • Cai J (1994) A Markov model of unconditional variance in ARCH. J Bus Econ Stat 12(3):309–316

    Google Scholar 

  • Carroll RJ, Härdle W, Mammen E (2002) Estimation in an additive model when the components are linked parametrically. Econom Theory 18(4):886–912

    MATH  Google Scholar 

  • Chen NF, Roll R, Ross SA (1986) Economic forces and the stock market. J Bus 59(3):383–403

    Article  Google Scholar 

  • Ciner C (2001) Energy shocks and financial markets: nonlinear linkages. Stud Nonlinear Dyn E 5(3):203–212

    Article  Google Scholar 

  • Čížek P, Spokoiny V (2009) Varying coefficient GARCH models. In: Mikosch T, Krei JP, Davis RA, Andersen TG (eds) Handbook of financial time series. Springer, Berlin Heidelberg, pp 169–185

    Google Scholar 

  • Cutler DM, Poterba JM, Summers LH (1991) Speculative dynamics. Rev Econ Stud 58(3):529–546

    Article  Google Scholar 

  • Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4):987–1007

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Qi L, Xiu D (2013) Quasi maximum likelihood estimation of GARCH models with heavy-tailed likelihoods. Working Paper Series

  • Francq C, Zakoïan JM (2010) GARCH models: structure, statistical inference and financial applications. Wiley, Chichester

    Book  Google Scholar 

  • Francq C, Wintenberger O, Zakoïan JM (2013) Garch models without positivity constraints: exponential or log garch? J Econom 177(1):34–46

    Article  MATH  Google Scholar 

  • Gogineni S (2008) The stock market reaction to oil price changes. Division of Finance, Michael F Price College of Business, University of Oklahoma, Norman

  • Gray SF (1996) Modeling the conditional distribution of interest rates as a regime-switching process. J Financ Econ 42(1):27–62

    Article  Google Scholar 

  • Hamilton JD, Susmel R (1994) Autoregressive conditional heteroskedasticity and changes in regime. J Econom 64(1):307–333

    Article  MATH  Google Scholar 

  • Han H, Kristensen D (2014) Asymptotic theory of the qmle for garch-x models with stationary and non-stationary covariates. J Bus Econ Stat 32:416–429

    Article  MathSciNet  Google Scholar 

  • Han H, Park JY (2008) Time series properties of arch processes with persistent covariates. J Econom 146:275–292

    Article  MathSciNet  Google Scholar 

  • Han H, Park JY (2012) Arch/garch with persistent covariate: asymptotic theory of mle. J Econom 167:95–112

    Article  MathSciNet  Google Scholar 

  • Hansen PR, Lunde A (2005) A forecast comparison of volatility models: does anything beat a GARCH (1, 1)? J Appl Econom 20(7):873–889

    Article  MathSciNet  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, London

    MATH  Google Scholar 

  • Huang JZ, Yang L (2004) Identification of non-linear additive autoregressive models. J R Stat Soc Ser B 66(2):463–477

    Article  MathSciNet  MATH  Google Scholar 

  • Huang R, Masulis R, Stoll H (1996) Energy shocks and financial markets. J Futures Markets 16(1):1–27

    Article  MATH  Google Scholar 

  • Iglesias EM (2009) Finite sample theory of qmles in arch models with an exogenous variable in the conditional variance equation. Stud Nonlinear Dyn E 13(2):1–28

  • Jensen ST, Rahbek A (2004a) Asymptotic inference for nonstationary GARCH. Econom Theory 20(6):1203–1226

    MathSciNet  MATH  Google Scholar 

  • Jensen ST, Rahbek A (2004b) Asymptotic normality of the QMLE estimator of ARCH in the nonstationary case. Econometrica 72(2):641–646

    Article  MathSciNet  MATH  Google Scholar 

  • Jones CM, Kaul G (1996) Oil and the stock markets. J Financ 51(2):463–491

    Article  Google Scholar 

  • Klaassen F (2002) Improving GARCH volatility forecasts with regime-switching GARCH. Emp Econ 27(2):363–394

    Article  Google Scholar 

  • Lee SW, Hansen BE (1994) Asymptotic theory for the GARCH (1, 1) quasi-maximum likelihood estimator. Econom Theory 10:29–52

    Article  MathSciNet  MATH  Google Scholar 

  • Sadorsky P (1999) Oil price shocks and stock market activity. Energy Econ 21(5):449–469

    Article  Google Scholar 

  • Stone CJ (1985) Additive regression and other nonparametric models. Ann Stat 13(2):689–705

    Article  MATH  Google Scholar 

  • Wang L, Yang L (2007) Spline-backfitted kernel smoothing of nonlinear additive autoregression model. Ann Stat 35(6):2474–2503

    Article  MATH  Google Scholar 

  • Wang L, Liu X, Liang H, Carroll RJ (2011) Estimation and variable selection for generalized additive partial linear models. Ann Stat 39(4):1827–1851

    Article  MathSciNet  MATH  Google Scholar 

  • Wang L, Feng C, Song Q, Yang L (2012) Efficient semiparametric GARCH modeling of financial volatility. Stat Sin 22:249–270

    MathSciNet  MATH  Google Scholar 

  • Yang L (2006) A semiparametric GARCH model for foreign exchange volatility. J Econom 130(2):365–384

    Article  Google Scholar 

  • Yang L, Härdle W, Nielsen J (1999) Nonparametric autoregression with multiplicative volatility and additive mean. J Time Ser Anal 20(5):579–604

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Han H (2014) Semiparametric arch-x model for leverage effect and long memory in stock return volatility. J Econ Theory Econom 25:81–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiongxia Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11749_2015_442_MOESM1_ESM.pdf

SUPPLEMENTARY MATERIAL Supplement to “Semiparametric Estimation and Forecasting for Exogenous Log-GARCH Models“ The supplementary material contains detailed proofs of Lemmas 2 to 5, 7 to 10 stated in Appendix. 155kb

Appendix: Proof of the theorems

Appendix: Proof of the theorems

Throughout the section, let \(\Vert \cdot \Vert \) be the Euclidean norm and supremum norm \(||\phi ||_{\infty }=\,\) sup\(_{x\in [0,1]}|\phi (x)|\). For any matrix \({\mathbf {A}}\), denote its spectral norm as \(\left\| {\mathbf {A}}\right\| _{2}\)  \(=\)  \(\mathrm{sup}_{\mathbf {x}\ne \mathbf{0}}\frac{ \left\| {\mathbf {Ax}}\right\| }{\left\| {\mathbf {x}}\right\| }\). For any vector \({\mathbf {V}}\), define \(\Vert {\mathbf {V}} \Vert _{\infty }=\,\) max\((\vert v_{1}\vert ,\ldots , \vert v_{n}\vert )\), and for any measurable function \(\phi \), define \(||\phi ||_{2}^{2}=E\phi ^2({\mathbf {X}}).\) Throughout the section, \(\kappa , \kappa _1\) and \(\kappa _2\) will be used as constants in a generic way.

Proof of Lemma 1

Proof

Recursively using the expression in (3), we have

$$\begin{aligned} \log \sigma _{t}^{2}= & {} c\left[ 1+\sum _{j=0}^{\infty }\prod _{k=0}^{j}\left\{ m({\mathbf {Z}}_{t-1-k})+a\right\} \right] \\&+\sum _{j=1}^{\infty }\left[ \prod _{k=0}^{j-1}\{m({\mathbf {Z}}_{t-1-k})+a\} \right] m({\mathbf {Z}}_{t-1-j})\log \epsilon _{t-j-1}^{2}+m({\mathbf {Z}}_{t-1})\log \epsilon _{t-1}^{2} . \end{aligned}$$

Under Assumption (A2), the first term on the right-hand side converges almost surely since

$$\begin{aligned} P\left( \lim _{t\rightarrow \infty }\left| \sum _{j=t}^{\infty }\prod _{k=0}^{j}\left\{ m\left( {\mathbf {Z}}_{t-1-k}\right) +a\right\} c\right| \le \lim _{t\rightarrow \infty }\left| \sum _{j=t}^{\infty }\delta ^{j+1}c\right| =0\right) =1. \end{aligned}$$

Similarly, the second term converges almost surely under the same assumption. Therefore, \(\log \sigma _{t}^{2}\) converges almost surely. \({\mathbf {Z}}_{t}\) is stationary and ergodic, then \( \log \sigma _{t}^{2}\), as a function of an ergodic process is stationary and ergodic.

In the following we list Lemmas 2, 3 and 4 to verify the regularity conditions for maximum likelihood function in (5).

Lemma 2

Under Assumptions (A2) and (A4), \(E_{{\varvec{\gamma }}_{0}}\left\| \frac{\partial l_{t}({\varvec{\gamma }}_{0})}{\partial {\varvec{\gamma }}}\right\| <\infty \) , \(E_{{\varvec{\gamma }}_{0}}\left( \frac{\partial l_{t}({\varvec{\gamma }}_{0})}{ \partial {\varvec{\gamma }}}\right) =0, E_{{\varvec{\gamma }}_{0}}\left\| \frac{\partial ^{2}l_{t}({\varvec{\gamma }}_{0})}{\partial {\varvec{\gamma }} \partial {\varvec{\gamma }}}\right\| <\infty \).

The proof of 2 is provided in the supplementary material to this article. The proofs of Lemmas 3 to 57 to 10 below are also provided in the supplementary material.

Lemma 3

Let \({\mathbf {J}}=E_{{\varvec{\gamma }}_{0}}\left( \frac{\partial ^{2}l_{t}( {\varvec{\gamma }}_{0})}{\partial {\varvec{\gamma }}\partial {\varvec{\gamma }}} \right) \), then \({\mathbf {J}}\) is invertible.

Lemma 4

Under Assumptions (A2) and (A4), we have

$$\begin{aligned} E_{{\varvec{\gamma }}_{0}}\sup _{{\varvec{\gamma }}\in V({\varvec{\gamma }} _{0})}\left| \frac{\partial ^{3}l_{t}({\varvec{\gamma }})}{\partial {\varvec{\gamma }}_{i}\partial {\varvec{\gamma }}_{j}\partial {\varvec{\gamma }} _{k}}\right| <\infty , \end{aligned}$$

here \(V({\varvec{\gamma }} _{0})=\left\{ {\varvec{\gamma }}:\exists \ \xi > 0, \left\| {\varvec{\gamma }}-{\varvec{\gamma }} _{0}\right\| _{\infty }<\xi ,{\varvec{\gamma }}\in {\varTheta }_1 \right\} \).

Next we consider an approximation to the likelihood function in (5). Define \(\breve{l}_{t}=\log \breve{\sigma }_{t}^{2}+y_{t}^{2}\breve{\sigma }_{t}^{-2}\), where

$$\begin{aligned} \log \breve{\sigma }_{t}^{2}=\frac{1-a^{t}}{1-a}c+\sum _{j=1}^{t}a^{j-1}\left( {\mathbf {Z}}_{t-j}^{1{\mathrm{\tiny T}}}{\varvec{\beta }}+\eta \left( {\mathbf { Z}}_{t-j}^{2}\right) \right) \log y_{t-j}^{2}. \end{aligned}$$
(10)

Lemma 5

Under Assumptions (A2) and (A4),

  1. 1.

    \(\lim _{T\rightarrow \infty }\sup _{{\varvec{\gamma }}\in {\varTheta }_{1}}1/T\sum _{t=1}^{\infty }\left| l_{t}({\varvec{\gamma }})-\breve{l}_{t}({\varvec{\gamma }})\right| =0,a.s\), and \(E_{{\varvec{\gamma }}_{0}}\left| l_{t}({\varvec{\gamma }}_{0})\right| <\infty .\)

  2. 2.

    If there exists \(t \in {\mathcal {Z}}\) such that \(\log \sigma ^{2}_{t}({\varvec{\gamma }})=\log {\sigma }_{t}^{2}({\varvec{\gamma }}_{0}),a.s.\), then we have \({\varvec{\gamma }}={\varvec{\gamma }}_{0}\).

Following Theorem 7.1 in Francq and Zakoïan (2010) and applying Lemma 5, we immediately obtain the following lemma.

Lemma 6

Under Assumptions (A2) and (A4), as \(T\) goes to infinity, \( {\varvec{\breve{\gamma }}}\rightarrow {\varvec{\gamma }}_{0}, \ a.s.\)

Lemma 7

Under Assumptions (A2) and (A4),

$$\begin{aligned} \left\| T^{-1/2}\sum _{t=1}^{T}\left\{ \frac{\partial l_{t}({\varvec{\gamma }}_{0})}{\partial {\varvec{\gamma }}}-\frac{\partial \breve{l}_{t}({\varvec{\gamma }}_{0})}{\partial {\varvec{\gamma }}} \right\} \right\| _{\infty }= & {} o_{p}(1) \end{aligned}$$
(11)
$$\begin{aligned} \sup _{{\varvec{\gamma }}\in V({\varvec{\gamma }}_0)}\left\| T^{-1}\sum _{t=1}^{T}\left\{ \frac{\partial ^{2}l_{t}({\varvec{\gamma }})}{\partial \mathbf { \gamma }\partial {\varvec{\gamma }}^{T}}-\frac{\partial ^{2}\breve{l}_{t}({\varvec{\gamma }})}{ \partial {\varvec{\gamma }}\partial {\varvec{\gamma }}^{T}}\right\} \right\| _{\infty }= & {} o_{p}(1). \end{aligned}$$
(12)

Lemma 8

Under Assumptions (A2) and (A4), as \(T\rightarrow \infty \),

$$\begin{aligned}&T^{-1/2}\sum _{t=1}^{T}\frac{\partial l_{t}({\varvec{\gamma }}_{0})}{\partial {\varvec{\gamma }}} \overset{D}{\rightarrow }N(0,\alpha {\mathbf {J}}),\\&T^{-1}\sum _{t=1}^{T}\frac{\partial ^{2}l_{t}(\breve{{\varvec{\gamma }}})(i,j)}{\partial {\varvec{\gamma }}_{i}\partial {\varvec{\gamma }}_{j}}\overset{P}{ \rightarrow }{\mathbf {J}}(i,j), \end{aligned}$$

where \(\alpha \) is \(E_{{\varvec{\gamma }}_{0}}\left( 1-\epsilon _{t}^{2}\right) ^2\) and \(\mathbf {J} =E_{{\varvec{\gamma }}_{0}}\left( \frac{\partial ^{2}l_{1}( {\varvec{\gamma }}_{0})}{\partial {\varvec{\gamma }}\partial {\varvec{\gamma }}^{\mathrm{\tiny T}}} \right) \).

Now we consider the likelihood function with \(\eta \) approximated by \(\tilde{ \eta }\) in (10). Define \(\tilde{l}_{t}=\log \tilde{\sigma } _{t}^{2}+\frac{y_{t}^{2}}{\tilde{\sigma }_{t}^{2}}\), where \( \log \tilde{\sigma }_{t}^{2}=\frac{1-a^{t}}{1-a}c+\sum _{j=1}^{t}a^{j-1}\left( {\mathbf {Z}}_{t-j}^{1{\mathrm{\tiny T}}}{\varvec{\beta }}+\tilde{\eta }\left( {\mathbf {Z}}_{t-j}^{2}\right) \right) \log y_{t-j}^{2}. \) Then define

$$\begin{aligned} \varvec{\tilde{\gamma }}=\underset{{\varvec{\gamma }}\in {\varTheta }_1 }{\text {argmin}} \ \frac{1}{T}\sum _{t=1}^{T}\tilde{l}_{t}. \end{aligned}$$
(13)

Lemma 9

Under Assumptions (A1)–(A5), as \(T\) goes to infinity, \(\tilde{{\varvec{\gamma }}}\rightarrow {\varvec{\gamma }}_{0},\ a.s.\)

Lemma 10

Under Assumptions (A1)–(A5),

$$\begin{aligned} \left\| T^{-1/2}\sum _{t=1}^{T}\left\{ \frac{\partial \breve{l_{t}}({\varvec{\gamma }}_{0})}{ \partial {\varvec{\gamma }}}-\frac{\partial \tilde{l}_{t}({\varvec{\gamma }}_{0})}{\partial \mathbf { \gamma }}\right\} \right\| _{\infty }= & {} o_{p}(1),\\ \sup _{{\varvec{\gamma }}\in V({\varvec{\gamma }}_{0})}\left\| T^{-1}\sum _{t=1}^{n}\left\{ \frac{\partial ^{2}\breve{l}_{t}({\varvec{\gamma }})}{\partial {\varvec{\gamma }}\partial {\varvec{\gamma }}^{T}}-\frac{\partial ^{2}\tilde{l}({\varvec{\gamma }}) _{t}}{\partial {\varvec{\gamma }}\partial {\varvec{\gamma }}^{T}}\right\} \right\| _{\infty }= & {} o_{p}(1). \end{aligned}$$

Combining Lemmas 67, 8910 with Slutsky’s Lemma, we immediately have

Lemma 11

Under Assumptions (A1)–(A5),

$$\begin{aligned} \sqrt{T}\left( {\varvec{{\tilde{\gamma }}}}-{\varvec{\gamma }}_{0}\right) \rightarrow N\left( 0,\alpha \mathbf {J}^{-1}\right) , \end{aligned}$$

where \(\alpha \) is \(E_{{\varvec{\gamma }}_{0}}\left( 1-\epsilon _{t}^{2}\right) ^2\) and \(\mathbf {J} =E_{{\varvec{\gamma }}_{0}}\left( \frac{\partial ^{2}l_{1}( {\varvec{\gamma }}_{0})}{\partial {\varvec{\gamma }}\partial {\varvec{\gamma }}^{\mathrm{\tiny T}}} \right) \).

Next, define \(\hat{l}_{t}=\log \hat{\sigma }_{t}^{2}+y^{2}\hat{\sigma }_{t}^{-2}\) with

$$\begin{aligned} \log \hat{\sigma }_{t}^{2}=\frac{1-a^{t}}{1-a}+\sum _{j=1}^{t}a^{j-1}\left( {\mathbf {Z}}_{t-j}^{1{\mathrm{\tiny T}}}{\varvec{\beta }}+{\mathbf {B}}({\mathbf {Z}}_{t-j}^2) {\varvec{\lambda }}\right) \log y_{t-j}^{2}. \end{aligned}$$

Lemma 12

Under Assumptions (A1)–(A5),

$$\begin{aligned} \sup _{{\varvec{\theta }}\in {\varTheta }}\left( \frac{\partial ^{2}\hat{\mathcal {L}}({\varvec{\theta }})}{\partial {\varvec{\theta }}\partial {\varvec{\theta }}^{{\mathrm{\tiny T}}}}\right) ^{-1}=O(1). \end{aligned}$$

Proof

Define \(\log \breve{\hat{\sigma }}^{2}_{t}({\varvec{\gamma }},{\varvec{\lambda }})= \frac{c}{1-a}+\sum _{j=1}^{\infty }a^{j-1}\left( {\mathbf {Z}}_{t-j}^{1} \mathbf {\beta }+\mathbf {B}({\mathbf {Z}}_{t-j}^{2}){\varvec{\lambda }}\right) \log y_{t-j}^{2},\) and \(\breve{\hat{l}}_{t}= \log \breve{\hat{\sigma }}^{2}_{t} + y^{2}_{t}e^{-\log \breve{\hat{\sigma }}^{2}_{t}}\). It is easy to show that

$$\begin{aligned} \frac{\partial ^{2}\breve{\hat{l}}_{t}({\varvec{\theta }})}{\partial {\varvec{\theta }}\partial {\varvec{\theta }}^{{\mathrm{\tiny T}}}} = (1-y_{t}^{2}e^{-\log \breve{\hat{\sigma }}^{2}_{t}}) \frac{\partial ^{2}\log \breve{\hat{\sigma }}^{2}_{t}}{\partial {\varvec{\theta }}\partial {\varvec{\theta }}^{{\mathrm{\tiny T}}}}+y_{t}^{2}e^{-\log \breve{\hat{\sigma }}_{t}^{2}}\frac{\partial \log \breve{\hat{\sigma }}^{2}_{t}}{\partial {\varvec{\theta }}}\frac{\partial \log \breve{\hat{\sigma }}^{2}_{t}}{\partial {\varvec{\theta }}^{{\mathrm{\tiny T}}}}. \end{aligned}$$

Similarly as in Lemma 3, we have \(\frac{\partial ^{2}\breve{\hat{l}}_{t} ({\varvec{\theta }})}{\partial {\varvec{\theta }}\partial {\varvec{\theta }}^{{\mathrm{\tiny T}}}}\) is invertible. Notice that

$$\begin{aligned} \sup _{\left( {\varvec{\gamma }},{\varvec{\lambda }}\right) \in {\varTheta }_{1}\times {\varTheta }_{2}}\left| \breve{\hat{l}}_t({\varvec{\gamma }}, {\varvec{\lambda }})\!-\!\hat{l}_t\left( {\varvec{\gamma }},{\varvec{\lambda }}\right) \right| \!=\! \sum _{j=t+1}^{\infty }a^{j-1}\left( {\mathbf {Z}}_{t-j}^{1}{\varvec{\beta }}\!+\!\mathbf {B} ({\mathbf {Z}}_{t-j}^{2}){\varvec{\lambda }}\right) \log y_{t-j}^{2} \!=\! O(\delta ^{t}), \end{aligned}$$

which is of \(o_{a.s}(1)\). We have,

$$\begin{aligned} \sup _{\left( {\varvec{\gamma }},{\varvec{\lambda }}\right) \in {\varTheta }_{1}\times {\varTheta }_{2}}\frac{\partial ^{2} \hat{l}_{t}({\varvec{\gamma }},{\varvec{\lambda }})}{\partial {\varvec{\theta }}\partial {\varvec{\theta }}^{{\mathrm{\tiny T}}}}\overset{a.s}{\rightarrow }\sup _{\left( {\varvec{\gamma }},{\varvec{\lambda }}\right) \in {\varTheta }_{1}\times {\varTheta }_{2}}\frac{\partial ^{2}\breve{\hat{l}}_{t}({\varvec{\gamma }},{\varvec{\lambda }})}{\partial {\varvec{\theta }}\partial {\varvec{\theta }}^{{\mathrm{\tiny T}}}}, \end{aligned}$$

which is invertible. Then \( \frac{\partial ^{2}\hat{\mathcal {L}}({\varvec{\theta }})}{\partial {\varvec{\theta }}\partial {\varvec{\theta }}^{{\mathrm{\tiny T}}}}\) is invertible as desired.

Recall that \({\varvec{\theta }}\!=\!\left( c,a,{\varvec{\beta }}^{\mathrm{\tiny T}},{\varvec{\lambda }}^{\mathrm{\tiny T}}\right) ^{\mathrm{\tiny T}}\!=\!\left( {\varvec{\gamma }}^{\mathrm{\tiny T}},{\varvec{\lambda }}^{\mathrm{\tiny T}}\right) ^{\mathrm{\tiny T}}, \hat{{\varvec{\theta }}}=\left( {\varvec{\hat{\gamma }}}^{{\mathrm{\tiny T}}}, \hat{{\varvec{\lambda }}}^{{\mathrm{\tiny T}}} \right) ^{{\mathrm{\tiny T}}} ={\text {argmin}}_{{\varvec{\theta }} \in {\varTheta }}\frac{1}{T}\) \( \sum _{t=1}^{T}\hat{l}_{t} \) with \({\varTheta }={\varTheta }_1\times {\varTheta }_2\) and \(\tilde{{\varvec{\theta }}}=\left( {\varvec{\tilde{\gamma }}}^{{\mathrm{\tiny T}}}, \tilde{{\varvec{\lambda }}}^{{\mathrm{\tiny T}}} \right) ^{{\mathrm{\tiny T}}} \) with \({\varvec{\tilde{\gamma }}}\) in (13) and \(\tilde{\eta }(\cdot )=\mathbf {B}\tilde{{\varvec{\lambda }}}\).

Lemma 13

Under Assumptions (A1)–(A5),

$$\begin{aligned} \left\| \hat{{\varvec{\theta }}}-\tilde{{\varvec{\theta }} }\right\| =O\left\{ N^{1/2}\left( h^{p}+T^{-1}\right) \right\} ,a.s. \end{aligned}$$

Proof

Let \(\hat{\mathcal {L}}_T = T^{-1}\sum _{t=1}^T \hat{l}_t\). By Taylor expansion,

$$\begin{aligned} \frac{\partial \hat{\mathcal {L}}_T(\hat{{\varvec{\theta }}})}{\partial {\varvec{\theta }}} -\frac{\partial \hat{\mathcal {L}} _T(\tilde{{\varvec{\theta }}})}{\partial {\varvec{\theta }}} = \frac{\partial ^2 \hat{\mathcal {L}}_T({\varvec{\zeta }})}{\partial {\varvec{\theta }} \partial {\varvec{\theta }}^T}\left( \hat{{\varvec{\theta }}}-\tilde{{\varvec{\theta }}}\right) , \end{aligned}$$

where \({\varvec{\zeta }}=\mathbf {t}\hat{{\varvec{\theta }}}+\left( \mathbf {I}-\mathbf {t} \right) \tilde{\varvec{\theta }}\). Therefore, \( \hat{{\varvec{{\theta }}}}-\tilde{{\varvec{\theta }}}=-\left( \frac{\partial ^2 \hat{\mathcal {L}}_T({\varvec{\zeta }})}{\partial {\varvec{\theta }} \partial {\varvec{\theta }}^T}\right) ^{-1} \frac{\partial \hat{\mathcal {L}}_{T}(\tilde{{\varvec{\theta }}})}{\partial {\varvec{\theta }}} \).

First, \( \frac{\partial \hat{\mathcal {L}}_{T}(\tilde{{\varvec{\theta }}})}{\partial {\varvec{\theta }}} = \left\{ \left( \frac{\partial \hat{\mathcal {L}}_{T}(\tilde{{\varvec{\theta }}})}{\partial {\varvec{\gamma }}} \right) ^{^{{\mathrm{\tiny T}}}},\left( \frac{\partial \hat{\mathcal {L}}_{T} (\tilde{{\varvec{\theta }}})}{\partial {\varvec{\lambda }}}\right) ^{^{{\mathrm{\tiny T}}}}\right\} ^{^{{ \mathrm{\tiny T}}}}\), where

$$\begin{aligned} \frac{\partial \hat{\mathcal {L}}_{T}(\tilde{{\varvec{\theta }}})}{\partial {\varvec{\gamma }}} =\frac{1}{T} \sum _{t=1}^{T}\left\{ \left( 1-\frac{y_{t}^{2}}{\tilde{\sigma }_{t}^{2}} \right) \frac{\partial \log \tilde{\sigma }_{t}^{2}}{\partial {\varvec{\gamma }}}\right\} . \end{aligned}$$
(14)

Simple computations give,

(15)

Under Assumption (A2), the preceding terms are all bounded. To be specific,

$$\begin{aligned} |H_{1,t}|_{\infty }=|H_{3,t}|_{\infty }=O_{a.s}\left( \frac{1}{1-\delta }\right) , \quad {\text {and}} \quad |H_{2,t}|_{\infty }=O_{a.s}\left( \frac{1}{\left( 1-\delta \right) ^{2}} \right) . \end{aligned}$$

Since \(\left| 1-y_{t}^{2}\tilde{\sigma }_{t}^{-2} \right| \le \left| 1-{y_{t}^{2}}{{\sigma }_{t}^{-2}}\right| +{y_{t}^{2}}O(h^{p})\), we obtain

$$\begin{aligned} \left| 1-y_{t}^{2}\tilde{\sigma }_{t}^{-2}\right| =O\left( \delta ^{t}+h^{p}\right) . \end{aligned}$$
(16)

Combining (14), (15) and (16), we have \(\left\| \frac{\partial \hat{\mathcal {L}}_{T}(\tilde{{\varvec{\theta }}})}{\partial {\varvec{\gamma }}}\right\| _{\infty }=O\left\{ \frac{1}{T(1-\delta )^{3}}+\frac{h^{p}}{(1-\delta )^{2}}\right\} =O(T^{-1}+h^{p}).\) We also have

$$\begin{aligned} \left\| \frac{\partial \hat{\mathcal {L}}_{T}(\tilde{{\varvec{\theta }}})}{ \partial {\varvec{\lambda }}}\right\| _{\infty }=\left\| T^{-1}\sum _{t=1}^{T}\left\{ \left( 1-\frac{y_{t}^{2}}{\tilde{\sigma }_{t}^{2}} \right) \sum _{j=1}^{t}a^{j-1}\log y_{t-j}^{2}\mathbf {B}^{^{{ \mathrm{\tiny T}}}}\right\} \right\| _{\infty }=O(T^{-1}). \end{aligned}$$

Thus, \(\left\| \frac{\partial \hat{\mathcal {L}}_{T}(\tilde{{\varvec{\theta }}})}{\partial {\varvec{\theta }} }\right\| _{\infty }=O(T^{-1}+h^{p}).\)

Second, let

$$\begin{aligned} V_{T}=\frac{\partial ^{2}\hat{\mathcal {L}}_{T}({\varvec{\zeta }})}{\partial {\varvec{\theta }}\partial {\varvec{\theta }}^{T}}=\left. \left( \begin{array}{cc} \frac{\partial ^{2}\hat{\mathcal {L}}_{T}}{\partial {\varvec{\gamma }}\partial {\varvec{\gamma }}^{T}} &{}\quad \frac{\partial ^{2}\hat{\mathcal {L}}_{T}}{\partial {\varvec{\gamma }}\partial {\varvec{\lambda }}^{T}} \\ \frac{\partial ^{2}\hat{\mathcal {L}}_{T}}{\partial {\varvec{\lambda }}\partial {\varvec{\gamma }}^{T}} &{}\quad \frac{\partial ^{2}\hat{\mathcal {L}}_{T}}{\partial {\varvec{\lambda }}\partial {\varvec{\lambda }}^{T}} \end{array} \right) \right| _{{\varvec{\theta }}={\varvec{\zeta }}}. \end{aligned}$$

According to Lemma 12, we have \(V_{T}^{-1}=O(1), a.s.\), then

$$\begin{aligned} \left\| \hat{{\varvec{\theta }}}-\tilde{{\varvec{\theta }}}\right\| _{\infty } \le \left\| V_{T}^{-1}\right\| _{\infty } \left\| \frac{\partial \hat{ \mathcal {L}}_{T}(\tilde{{\varvec{\theta }}})}{\partial {\varvec{\theta }}} \right\| _{\infty } =O\left\{ N^{1/2}\left( h^{p}+T^{-1}\right) \right\} ,a.s. \end{aligned}$$

Proof of Theorem 1

We have

$$\begin{aligned} \left\| \hat{\eta }-\tilde{\eta }\right\| _{2}^{2}= & {} \left\| \left( \hat{{\varvec{\lambda }}}-\tilde{{\varvec{\lambda }}}\right) ^{^{{ \mathrm{\tiny T}}}}\mathbf {B}\right\| _{2}^{2}=\left( \hat{{\varvec{\lambda }}}-\tilde{ {\varvec{\lambda }}}\right) ^{{\mathrm{\tiny T}}}E\left\{ T^{-1}\sum _{j=1}^{T} \mathbf {B}({\mathbf {Z}}_{j}^{2})\mathbf {B}({\mathbf {Z}}_{j}^{2})\right\} \left( \hat{{\varvec{\lambda }}}-\tilde{{\varvec{\lambda }}}\right) \\\le & {} \kappa \left\| \hat{{\varvec{\lambda }}}-\tilde{{\varvec{\lambda }}} \right\| _{2}^{2}. \end{aligned}$$

According to Lemma 13, \(\left\| \hat{\eta }-\tilde{\eta }\right\| _{2}=O_{p}\left\{ N^{1/2}\left( h^{p}+T^{-1}\right) \right\} \). Therefore,

$$\begin{aligned} {\left\| \hat{\eta }-{\eta _0 }\right\| }_{2}\le & {} {\left\| \hat{\eta }- \tilde{\eta }\right\| }_{2}+{\left\| \tilde{\eta }-\eta _0 \right\| }_{2} \\= & {} O_{p}\left\{ N^{1/2}\left( h^{p}+T^{-1}\right) \right\} +O_{p}\left( h^{p}\right) , \end{aligned}$$

which is of \(O_{p}\left\{ N^{1/2}\left( h^{p}+T^{-1}\right) \right\} \).

For the additive components, by Lemma 1 of Stone (1985), \(\left\| \hat{\eta }_{s_{2}}-\eta _{s_{2},0}\right\| _{2,s_2}=O_{p}\left\{ N^{1/2}\left( h^{p}+T^{-1}\right) \right\} \), for \(1\le s_{2}\le d_{2}\). And, similar to Lemma A.8 in Wang and Yang (2007), we obtain the same rate for empirical norms, i.e., \( \left\| \hat{\eta }_{s_{2}}-\eta _{s_{2},0}\right\| _{n,s_2}=O_{p}\left\{ N^{1/2}\left( h^{p}+T^{-1}\right) \right\} \), for \( 1\le s_{2}\le d_{2}.\)

Proof of Theorem 2

“The” result follows immediately from Lemmas 11,  13 and Slutsky’s Lemma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Song, Q. Semi-parametric estimation and forecasting for exogenous log-GARCH models. TEST 25, 93–112 (2016). https://doi.org/10.1007/s11749-015-0442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-015-0442-6

Keywords

Mathematics Subject Classification

Navigation