Skip to main content

Advertisement

Log in

Tolerance of the developing cyanotic heart to ischemia-reperfusion injury in the rat

  • Original Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Objective

Whether chronic hypoxia attenuates myocardial ischemia-reperfusion injury remains controversial because conflicting data have been reported probably due to the existence of many factors influencing the functional recovery of hearts. These factors include the differences of species, the time at which hypoxia begins, the degree of hypoxia, and so on. Regarding chronic hypoxia from birth, so far the only available data are based on findings in rabbit hearts. The purpose of this study was to describe the effect of chronic hypoxia from birth on myocardial reperfusion injury in the rat heart.

Methods

Normoxic hearts were obtained from rats housed in ambient air for 6 weeks (normoxic group); hypoxic hearts were obtained from rats housed in a hypoxic chamber (13%–14% oxygen) from birth for 6 weeks (hypoxic group). Isolated, crystalloid perfused working hearts were subjected to 30 min of global normothermic ischemia followed by 15 min of reperfusion; functional recovery was then measured in the two groups. The excretion of cyclic guanosine monophosphate (cGMP) in the coronary drainage was measured at the end of the preischemia and reperfusion periods.

Results

The percent recovery of the left ventricular developed pressure and the first derivative of left ventricular pressure were significantly better in the hypoxic group than in the normoxic group. cGMP excretion in the coronary drainage was significantly increased during both the preischemia and reperfusion periods.

Conclusion

Chronic hypoxia from birth increased myocardial tolerance to ischemia-reperfusion injury with increased cGMP synthesis in the isolated heart model in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turek Z, Kubat K, Ringnalda BEM. Experimental myocardial infarction in rats acclimated to simulated high altitude. Basic Res Cardiol 1980;75:544–553.

    Article  PubMed  CAS  Google Scholar 

  2. Neckar J, Szarszoi O, Herget J, Ostadal B, Kolar F. Cardioprotective effect of chronic hypoxia is blunted by concomitant hypercapnia. Physiol Res 2003;52:171–175.

    PubMed  CAS  Google Scholar 

  3. Tajima M, Katayose D, Bessho M, Isoyama S. Acute ischemic preconditioning and chronic hypoxia independently increase myocardial tolerance to ischemia. Cardiovasc Res 1994;28:312–339.

    Article  PubMed  CAS  Google Scholar 

  4. Corno AF, Milano G, Samaja M, Tozzi P, von Segesser LK. Chronic hypoxia: a model for cyanotic congenital heart defects. J Thorac Cardiovasc Surg 2002;124:105–112.

    Article  PubMed  Google Scholar 

  5. Lupinetti FM, Wareing TH, Huddleston CB, Collins JC, Boucek RJ Jr, Bender HW Jr, et al. Pathophysiology of chronic cyanosis in a canine model: functional and metabolic response to global ischemia. J Thorac Cardiovasc Surg 1985;90:291–296.

    PubMed  CAS  Google Scholar 

  6. Baker EJ, Boerboom LE, Olinger GN, Baker JE. Tolerance of the developing heart to ischemia: impact of hypoxemia from birth. Am J Physiol 1995;268:H1165–H1173.

    PubMed  CAS  Google Scholar 

  7. Baker JE, Holman P, Kalyanaraman B, Griffith OW, Pritchard KA. Adaptation to chronic hypoxia confers tolerance to subsequent myocardial ischemia by increased nitric oxide production. Ann NY Acad Sci 1999;874:236–253.

    Article  PubMed  CAS  Google Scholar 

  8. Shi Y, Pritchard KA, Holman P, Rafiee P, Griffith OW, Kalyanaraman B, et al. Chronic myocardial hypoxia increases nitric oxide synthase and decreases. Free Radic Biol Med 2000;29:695–703.

    Article  PubMed  CAS  Google Scholar 

  9. Baker JE, Contney SJ, Singh R, Kalyanaraman B, Gross GJ, Bosnjak ZJ. Nitric oxide activates the sarcolemmal K(ATP) channel in normoxic and chronically hypoxic hearts by a cyclic GMP-dependent mechanism. J Mol Cell Cardiol 2001;33:331–341.

    Article  PubMed  CAS  Google Scholar 

  10. Elles JT, Henry MM, Gross GJ, Baker JE. Increased mitochondrial K(ATP) channel activity during chronic myocardial hypoxia: is cardioprotection mediated by improved bioenergetics? Circ Res 2000;87:915–921.

    Google Scholar 

  11. Baker JE, Curry BD, Olinger GN, Gross GJ. Increased tolerance of the chronically hypoxic immature heart to ischemia: contribution of KATP channel. Circulation 1997;95:1278–1285.

    PubMed  CAS  Google Scholar 

  12. Baker JE, Boerboom LE, Olinger GN. Is protection of ischemic neonatal myocardium by cardioplegia species dependent? J Thorac Cardiovasc Surg 1990;95:280–287.

    Google Scholar 

  13. Inserte J, Garcia-Dorado D, Agullo L, Paniagua A, Soler-Soler J. Urodilatin limits acute reperfusion injury in the isolated rat heart. Cardiovasc Res 2000;45:351–359.

    Article  PubMed  CAS  Google Scholar 

  14. Nakanishi K, Inoue M, Sugawara E, Sano S. Ischemia and reperfusion injury of cyanotic myocardium in chronic hypoxic rat model: changes in cyanotic myocardial antioxidant system. J Thorac Cardiovasc Surg 1997;114:1088–1096.

    Article  PubMed  CAS  Google Scholar 

  15. Hearse DJ, Stewart DA, Braimbridge MV. Hypothermic arrest and potassium arrest. Circ Res 1975;36:481–489.

    PubMed  CAS  Google Scholar 

  16. Wang QD, Swardh A, Sjoquist PO. Relationship between ischemic time and ischemia/reperfusion injury in isolated Langendorff-perfusion mouse hearts. Acta Physiol Scand 2001;171:123–128.

    Article  PubMed  CAS  Google Scholar 

  17. Steiner AW, Parker CW, Kipnis DM. Radioimmunoassay for cyclic nucleotides. 1. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem 1972;247:1106–1113.

    PubMed  CAS  Google Scholar 

  18. Siegmund B, Klietz T, Schwartz P, Piper HM. Temporary contractile blockade prevents hypercontracture in anoxicreoxygenated cardiomyocytes. Am J Physiol 1991;260:H426–H435.

    PubMed  CAS  Google Scholar 

  19. Parrat JR. Possibilities for the pharmacological exploitation of ischemic preconditioning. J Mol Cell Cardiol 1995;27:991–1000.

    Article  Google Scholar 

  20. Endoh H, Kaneko T, Nakamura H, Doi K, Takahashi E. Improved cardiac contractile functions in hypoxiareoxygenation treated with low concentration Co(2+). Am J Physiol Heart Circ Physiol 2000;279:H2713–H2719.

    PubMed  CAS  Google Scholar 

  21. Ozaki M, Kawashima S, Yamashita T, Ohashi Y, Rikitake Y, Inoue N, et al. Reduced hypoxic pulmonary vascular remodeling by nitric oxide from the endothelium. Hypertension 2001;37:322–327.

    PubMed  CAS  Google Scholar 

  22. Ohigashi T, Brookins J, Fisher JW. Interaction of nitric oxide and cyclic guanosine 3′–5′-monophosphate in erythropoietin production. J Clin Invest 1993;92:1587–1591.

    Article  PubMed  CAS  Google Scholar 

  23. Landox A, Frelin C. Hypoxia is a strong inducer of vascular endotherial growth factor mRNA expression in the heart. Biochem Biopsys Res Commun 1993;195:1005–1010.

    Article  Google Scholar 

  24. Brunner F, Maier R, Andrew P, Wolkart G, Zechner R, Mayer B. Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Cardiovasc Res 2003;57:55–62.

    Article  PubMed  CAS  Google Scholar 

  25. Lourenco AP, Roncon-Albuquerque R Jr, Bras-Silva C, Farita B, Wieland J, Henriques-Coelho T, et al. Myocardial dysfunction and neurohumoral activation without remodeling in left ventricle of monocrotaline-induced pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol 2006;291:H1587–H1594.

    Article  PubMed  CAS  Google Scholar 

  26. Lamberts RR, Vaessen RJ, Westerhof N, Stienen GJM. Right ventricular hypertrophy causes impairment of left ventricular diastolic function in the rat. Basic Res Cardiol 2007;102:19–27.

    Article  PubMed  CAS  Google Scholar 

  27. Walters HL, Digerness SB, Naftel DC, Waggoner JR, Blackstone EH, Kirklin JW. The response to ischemia in blood perfused versus crystalloid perfused isolated rat heart preparations. J Mol Cell Cardiol 1992;24:1063–1077.

    Article  PubMed  Google Scholar 

  28. Fitzpatrick CM, Shi Y, Hutchins WC, Su J, Gross GJ, Ostadal B, et al. Cardioprotection in chronically hypoxic rabbits persists on exposure to normoxia: role of NOS and KATP channels. Am J Physiol Heart Circ Physiol 2005;288:H62–H68.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Fujii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, Y., Ishino, K., Tomii, T. et al. Tolerance of the developing cyanotic heart to ischemia-reperfusion injury in the rat. Gen Thorac Cardiovasc Surg 58, 174–181 (2010). https://doi.org/10.1007/s11748-009-0497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-009-0497-y

Key words

Navigation