Skip to main content
Log in

Right ventricular hypertrophy causes impairment of left ventricular diastolic function in the rat

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Right ventricular (RV) pressure overload causes right ventricular hypertrophy in several types of pulmonary and congenital heart diseases. The associated cardiac dysfunction has generally been attributed to alterations in RV function. However, due to global neurohormonal adaptations and mechanical ventricular interaction left ventricular (LV) function could be affected as well.Therefore,LV function, RV function and their interaction were studied in rats with monocrotaline (MCT)-induced RV hypertrophy and control rats. MCT (30 mg/kg) was used to induce pulmonary hypertension, which resulted, after 28 days, in marked RV hypertrophy (RV-weight: control 220 ± 15,MCT 437 ± 34mg,p < 0.05). In Langendorff-perfused hearts with balloons inserted in both the LV and the RV, the diastolic pressure-volume relations showed increased stiffness, and relaxation was prolonged in the LV and RV in the MCT group compared to controls. In the MCT group, developed pressures were increased only in the RV. An increase of LV volume increased RV diastolic pressure to a similar extent in both groups. However, an increase in RV volume did not affect LV diastolic pressure in controls, but significantly increased LV diastolic pressure in the MCT group. LV and RV developed pressure-volume relations were not affected. Calculated circumferential end-diastolic wall stresses (σ) were larger in the MCT group (LV-σ: 0.55 ± 0.02, RV-σ: 1.94 ± 0.30 kN/m2, both p< 0.05 to control) compared to controls (LV-σ: 0.34 ± 0.06,RV-σ: 1.23 ± 0.46 kN/m2). In the MCT group, collagen content was increased in the LV, septum and RV compared to controls. In conclusion, structural changes of the RV and LV result in depressed LV diastolic function during RV hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badenhorst D, Maseko M, Tsotetsi OJ, Naidoo A, Brooksbank R, Norton GR, Woodiwiss AJ (2003) Cross-linking influences the impact of quantitative changes in myocardial collagen on cardiac stiffness and remodelling in hypertension in rats. Cardiovasc Res 57:632–641

    Article  PubMed  CAS  Google Scholar 

  2. Badke FR (1982) Left ventricular dimensions and function during right ventricular pressure overload. Am J Physiol 242:H611–H618

    PubMed  CAS  Google Scholar 

  3. Baker AE, Dani R, Smith ER, Tyberg JV, Belenkie I (1998) Quantitative assessment of independent contributions of pericardium and septum to direct ventricular interaction. Am J Physiol 275:H476–H483

    PubMed  CAS  Google Scholar 

  4. Belenkie I,Horne SG, Dani R,Smith ER, Tyberg JV (1995) Effects of aortic constriction during experimental acute right ventricular pressure loading. Further insights into diastolic and systolic ventricular interaction. Circulation 92:546–554

    PubMed  CAS  Google Scholar 

  5. Borbely A, van der Velden J, Papp Z, Bronzwaer JG, Edes I, Stienen GJM, Paulus WJ (2005) Cardiomyocyte stiffness in diastolic heart failure. Circulation 111:774–781

    Article  PubMed  Google Scholar 

  6. Bove AA, Santamore WP (1981) Ventricular interdependence. Prog Cardiovasc Dis 23:365–388

    Article  PubMed  CAS  Google Scholar 

  7. Brunner F (1999) Cardiac endothelin and big endothelin in right-heart hypertrophy due to monocrotaline-induced pulmonary hypertension in rat. Cardiovasc Res 44:197–206

    Article  PubMed  CAS  Google Scholar 

  8. Buccino RA, Harris E, Spann JF, Jr., Sonnenblick EH (1969) Response of myocardial connective tissue to development of experimental hypertrophy. Am J Physiol 216:425–428

    PubMed  CAS  Google Scholar 

  9. Buermans HP, Redout EM, Schiel AE, Musters RJ, Zuidwijk M, Eijk PP, van Hardeveld C, Kasanmoentalib S,Visser FC, Ylstra B, Simonides WS (2005) Microarray analysis reveals pivotal divergent mRNA expression profiles early in the development of either compensated ventricular hypertrophy or heart failure. Physiol Genomics 21:314–323

    Article  PubMed  CAS  Google Scholar 

  10. Damiano RJ, Jr., La FP, Jr., Cox JL, Lowe JE, Santamore WP (1991) Significant left ventricular contribution to right ventricular systolic function. Am J Physiol 261:H1514–H1524

    PubMed  Google Scholar 

  11. Elzinga G, Piene H, de Jong JP (1980) Left and right ventricular pump function and consequences of having two pumps in one heart. A study on the isolated cat heart. Circ Res 46:564–574

    PubMed  CAS  Google Scholar 

  12. Elzinga G, van Grondelle R,Westerhof N, van den Bos GC (1974) Ventricular interference. Am J Physiol 226:941–947

    PubMed  CAS  Google Scholar 

  13. Gan TJ, Lankhaar JW, Marcus JT,Westerhof N, Marques KM, Bronzwaer JG, Boonstra A,Postmus PE,Vonk-Noordegraaf A (2006) Impaired left ventricular filling due to right to left ventricular interaction in patients with pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 290:H1528–H1533

    PubMed  CAS  Google Scholar 

  14. Gonzalez A, Lopez B, Querejeta R, Diez J (2002) Regulation of myocardial fibrillar collagen by angiotensin IIA role in hypertensive heart disease? J Mol Cell Cardiol 34:1585–1593

    Article  PubMed  CAS  Google Scholar 

  15. Graham TP, Jr. (1991) Ventricular performance in congenital heart disease. Circulation 84:2259–2274

    PubMed  Google Scholar 

  16. Granzier HL and Irving TC (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 68:1027–1044

    Article  PubMed  CAS  Google Scholar 

  17. Guzman PA, Maughan WL, Yin FC, Eaton LW, Brinker JA, Weisfeldt ML, Weiss JL (1981) Transseptal pressure gradient with leftward septal displacement during the Mueller manoeuvre in man. Br Heart J 46:657–662

    PubMed  CAS  Google Scholar 

  18. Ito H, Hirata Y, Adachi S, Tanaka M, Tsujino M, Koike A, Nogami A, Murumo F, Hiroe M (1993) Endothelin-1 is an autocrine/ paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest 92:398–403

    Article  PubMed  CAS  Google Scholar 

  19. Janicki JS, Weber KT (1980) The pericardium and ventricular interaction, distensibility, and function. Am J Physiol 238:H494–H503

    PubMed  CAS  Google Scholar 

  20. Jardin F, Dubourg O, Gueret P, Delorme G, Bourdarias JP (1987) Quantitative two-dimensional echocardiography in massive pulmonary embolism: emphasis on ventricular interdependence and leftward septal displacement. J Am Coll Cardiol 10:1201–1206

    Article  PubMed  CAS  Google Scholar 

  21. King ME, Braun H, Goldblatt A, Liberthson R, Weyman AE (1983) Interventricular septal configuration as a predictor of right ventricular systolic hypertension in children: a cross-sectional echocardiographic study. Circulation 68:68–75

    PubMed  CAS  Google Scholar 

  22. Kingma I, Tyberg JV, Smith ER (1983) Effects of diastolic transseptal pressure gradient on ventricular septal position and motion. Circulation 68:1304–1314

    PubMed  CAS  Google Scholar 

  23. Kögler H, Hartmann O, Leineweber K, Nguyen van P, Schott P, Brodde OE, Hasenfuss G (2003) Mechanical loaddependent regulation of gene expression in monocrotaline-induced right ventricular hypertrophy in the rat. Circ Res 93:230–237

    Article  PubMed  CAS  Google Scholar 

  24. Korstjens IJ, Rouws CH, van der Laarse WJ,Van der Zee L, Stienen GJM (2002) Myocardial force development and structural changes associated with monocrotaline induced cardiac hypertrophy and heart failure. J Muscle Res Cell Motil 23:93–102

    Article  PubMed  CAS  Google Scholar 

  25. Leeuwenburgh BP, Steendijk P, Helbing WA, Baan J (2002) Indexes of diastolic RV function: load dependence and changes after chronic RV pressure overload in lambs. Am J Physiol 282:H1350–H1358

    CAS  Google Scholar 

  26. Little WC, Badke FR, O’Rourke RA (1984) Effect of right ventricular pressure on the end-diastolic left ventricular pressure-volume relationship before and after chronic right ventricular pressure overload in dogs without pericardia. Circ Res 54:719–730

    PubMed  CAS  Google Scholar 

  27. Maughan WL, Kallman CH, Shoukas A (1981) The effect of right ventricular filling on the pressure-volume relationship of ejecting canine left ventricle. Circ Res 49:382–388

    Google Scholar 

  28. Mukherjee D, Sen S (1990) Collagen phenotypes during development and regression of myocardial hypertrophy in spontaneously hypertensive rats. Circ Res 67:1474–1480

    PubMed  CAS  Google Scholar 

  29. Norton GR, Tsotetsi J, Trifunovic B, Hartford C, Candy GP, Woodiwiss AJ (1997) Myocardial stiffness is attributed to alterations in cross-linked collagen rather than total collagen or phenotypes in spontaneously hypertensive rats. Circulation 96:1991–1998

    PubMed  CAS  Google Scholar 

  30. Olsen CO, Tyson GS, Maier GW, Spratt JA,Davis JW,Rankin JS (1983) Dynamic ventricular interaction in the conscious dog. Circ Res 52:85–104

    PubMed  CAS  Google Scholar 

  31. Santamore WP, Dell’Italia LJ (1998) Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis 40:289–308

    Article  PubMed  CAS  Google Scholar 

  32. Santamore WP, Gray LA, Jr. (1996) Left ventricular contributions to right ventricular systolic function during LVAD support. Ann Thorac Surg 61:350–356

    Article  PubMed  CAS  Google Scholar 

  33. Santamore WP, Lynch PR, Meier G, Heckman J, Bove AA (1976) Myocardial interaction between the ventricles. J Appl Physiol 41:362–368

    PubMed  CAS  Google Scholar 

  34. Shirakabe M, Yamaguchi S, Tamada Y, Baniya G, Fukui A, Miyawaki H, Tomoike H (2001) Impaired distensibility of the left ventricle after stiffening of the right ventricle. J Appl Physiol 91: 435–440

    PubMed  CAS  Google Scholar 

  35. Slinker BK,Chagas AC,Glantz SA (1987) Chronic pressure overload hypertrophy decreases direct ventricular interaction. Am J Physiol 253:H347–H357

    PubMed  CAS  Google Scholar 

  36. Slinker BK, Glantz SA (1986) End-systolic and end-diastolic ventricular interaction. Am J Physiol 251:H1062–H1075

    PubMed  CAS  Google Scholar 

  37. Sys SU, Dekeulenaer GW, Brutsaert DL (1998) Physiopharmacological evaluation of myocardial performance – how to study modulation by cardiac endothelium and related humoral factors. Cardiovasc Res 39:136–147

    Article  PubMed  CAS  Google Scholar 

  38. Tanaka H, Tei C, Nakao S, Tahara M, Sakurai S, Kashima T, Kanehisa T (1980) Diastolic bulging of the interventricular septum toward the left ventricle. An echocardiographic manifestation of negative interventricular pressure gradient between left and right ventricles during diastole. Circulation 62:558–563

    PubMed  CAS  Google Scholar 

  39. Versluis JP, Heslinga JW, Sipkema P, Westerhof N (2004) Contractile reserve but not tension is reduced in monocrotaline- induced right ventricular hypertrophy. Am J Physiol Heart Circ Physiol 286:H979–H984

    Article  PubMed  CAS  Google Scholar 

  40. Visner MS, Arentzen CE, Crumbley AJ, III, Larson EV, O’Connor MJ,Anderson RW (1986) The effects of pressure-induced right ventricular hypertrophy on left ventricular diastolic properties and dynamic geometry in the conscious dog. Circulation 74:410–419

    PubMed  CAS  Google Scholar 

  41. Vonk-Noordegraaf A, Marcus JT, Gan CT, Boonstra A, Postmus PE (2005) Interventricular mechanical asynchrony due to right ventricular pressure overload in pulmonary hypertension plays an important role in impaired left ventricular filling. Chest 128:628S–630S

    Article  PubMed  Google Scholar 

  42. Weyman AE, Wann S, Feigenbaum H, Dillon JC (1976) Mechanism of abnormal septal motion in patients with right ventricular volume overload: a cross-sectional echocardiographic study. Circulation 54:179–186

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Lamberts PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamberts, R.R., Vaessen, R.J., Westerhof, N. et al. Right ventricular hypertrophy causes impairment of left ventricular diastolic function in the rat. Basic Res Cardiol 102, 19–27 (2007). https://doi.org/10.1007/s00395-006-0620-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-006-0620-5

Key words

Navigation