Aguirre-Urreta, M. I., Marakas, G. M., & Ellis, M. E. (2013). Measurement of composite reliability in research using partial least squares: some issues and an alternative approach. SIGMIS Database, 44(4), 11–43.
Article
Google Scholar
Anderson, E. W., & Fornell, C. G. (2000). Foundations of the American customer satisfaction index. Total Quality Management, 11(7), 869–882.
Article
Google Scholar
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: a review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423.
Article
Google Scholar
Bagozzi, R. P. (1984). A prospectus for theory construction in marketing. Journal of Marketing, 48(1), 11–29.
Bagozzi, R. P., & Phillips, L. W. (1982). Representing and testing organizational theories: a holistic construal. Administrative Science Quarterly, 27(3), 459–489.
Article
Google Scholar
Barclay, D. W., Higgins, C. A., & Thompson, R. (1995). The partial least squares approach to causal modeling: personal computer adoption and use as illustration. Technology Studies, 2(2), 285–309.
Google Scholar
Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: Wiley.
Bollen, K. A., & Lennox, R. (1991). Conventional wisdom on measurement: a structural equation perspective. Psychological Bulletin, 110(2), 305–314.
Article
Google Scholar
Campbell, D. T. (1960). Recommendations for APA test standards regarding construct, trait, or discriminant validity. American Psychologist, 15(8), 546–553.
Article
Google Scholar
Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81–105.
Article
Google Scholar
Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–358). Mahwah: Lawrence Erlbaum.
Google Scholar
Chin, W. W. (2010). How to write up and report PLS analyses. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: concepts, methods and applications in marketing and related fields (pp. 655–690). Berlin: Springer.
Chapter
Google Scholar
Clark, L. A., & Watson, D. (1995). Constructing validity: basic issues in objective scale development. Psychological Assessment, 7(3), 309–319.
Article
Google Scholar
Cording, M., Christmann, P., & King, D. R. (2008). Reducing causal ambiguity in acquisition integration: intermediate goals as mediators of integration decisions and acquisition performance. Academy of Management Journal, 51(4), 744–767.
Google Scholar
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.
Article
Google Scholar
Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: an alternative to scale development. Journal of Marketing Research, 38(2), 269–277.
Diamantopoulos, A., Sarstedt, M., Fuchs, C.,Wilczynski, P., & Kaiser, S. (2012). Guidelines for choosing between multi-item and single-item scales for construct measurement: a predictive validity perspective. Journal of the Academy of Marketing Science, 40(3), 434–449.
Dijkstra, T. K. (2014). PLS’ Janus face – response to professor Rigdon’s ‘rethinking partial least squares modeling: in praise of simple methods’. Long Range Planning, 47(3), 146–153.
Dijkstra, T. K., & Henseler, J. (2011). Linear indices in nonlinear structural equation models: best fitting proper indices and other composites. Quality and Quantity, 45(6), 1505–1518.
Article
Google Scholar
Dijkstra, T. K. and Henseler, J. (2014a). Consistent partial least squares path modeling. MIS Quarterly, forthcoming.
Dijkstra, T. K. and Henseler, J. (2014b). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics & Data Analysis, forthcoming.
Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling. Akron: University of Akron Press.
Google Scholar
Farrell, A. M. (2010). Insufficient discriminant validity: a comment on Bove, Pervan, Beatty, and Shiu (2009). Journal of Business Research, 63(3), 324–327.
Article
Google Scholar
Fornell, C. G., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440–452.
Article
Google Scholar
Fornell, C. G., & Cha, J. (1994). Partial least squares. In R. P. Bagozzi (Ed.), Advanced methods of marketing research (pp. 52–78). Oxford: Blackwell.
Google Scholar
Fornell, C. G., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.
Article
Google Scholar
Fornell, C. G., Johnson, M. D., Anderson, E. W., Cha, J., & Bryant, B. E. (1996). The American Customer Satisfaction Index: nature, purpose, and findings. Journal of Marketing, 60(4), 7–18.
Gefen, D., & Straub, D. W. (2005). A practical guide to factorial validity using PLS-Graph: tutorial and annotated example. Communications of the AIS, 16, 91–109.
Google Scholar
Gefen, D., Straub, D. W., & Boudreau, M.-C. (2000). Structural equation modeling techniques and regression: guidelines for research practice. Communications of the AIS, 4, 1–78.
Google Scholar
Gold, A. H., Malhotra, A., & Segars, A. H. (2001). Knowledge management: an organizational capabilities perspective. Journal of Management Information Systems, 18(1), 185–214.
Google Scholar
Goodhue, D. L., Lewis, W., & Thompson, R. (2012). Does PLS have advantages for small sample size or non-normal data? MIS Quarterly, 36(3), 891–1001.
Google Scholar
Götz, O., Liehr-Gobbers, K., & Krafft, M. (2010). Evaluation of structural equation models using the partial least squares (PLS) approach. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: concepts, methods and applications (pp. 691–711). Berlin: Springer.
Gudergan, S. P., Ringle, C. M., Wende, S., & Will, S. (2008). Confirmatory tetrad analysis in PLS path modeling. Journal of Business Research, 61(12), 1238–1249.
Article
Google Scholar
Haenlein, M., & Kaplan, A. M. (2004). A beginner’s guide to partial least squares analysis. Understanding Statistics, 3(4), 283–297.
Article
Google Scholar
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Englewood Cliffs: Prentice Hall.
Google Scholar
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–151.
Article
Google Scholar
Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012a). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414–433.
Article
Google Scholar
Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012b). The use of partial least squares structural equation modeling in strategic management research: a review of past practices and recommendations for future applications. Long Range Planning, 45(5–6), 320–340.
Article
Google Scholar
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks: Sage.
Google Scholar
Henseler, J. (2012). Why generalized structured component analysis is not universally preferable to structural equation modeling. Journal of the Academy of Marketing Science, 40(3), 402–413.
Article
Google Scholar
Henseler, J., & Sarstedt, M. (2013). Goodness-of-fit indices for partial least squares path modeling. Computational Statistics, 28(2), 565–580.
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277–320.
Google Scholar
Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen, D. J., Hair, J. F., Hult, G. T. M., & Calantone, R. J. (2014). Common beliefs and reality about partial least squares: comments on Rönkkö & Evermann (2013). Organizational Research Methods, 17(2), 182–209.
Article
Google Scholar
Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple significance testing. Biometrika, 75(4), 800–802.
Article
Google Scholar
Holm, S. (1979). A simple sequentially rejective Bonferroni test procedure. Scandinavian Journal of Statistics, 6(1), 65–70.
Google Scholar
Hui, B. S., & Wold, H. (1982). Consistency and consistency at large of partial least squares estimates. In K. G. Jöreskog, & H. Wold (Eds.), Systems under indirect observation, part II (pp. 119–130). Amsterdam: North Holland.
Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: a review of four recent studies. Strategic Management Journal, 20(2), 195–204.
Article
Google Scholar
Hwang, H., & Takane, Y. (2004). Generalized structured component analysis. Psychometrika, 69(1), 81–99.
Article
Google Scholar
Hwang, H., Malhotra, N. K., Kim, Y., Tomiuk, M. A., & Hong, S. (2010). A comparative study on parameter recovery of three approaches to structural equation modeling. Journal of Marketing Research, 47(4), 699–712.
Article
Google Scholar
John, O. P., & Benet-Martínez, V. (2000). Measurement: reliability, construct validation, and scale construction. In H. T. Reis & C. M. Judd (Eds.), Handbook of research methods in social and personality psychology (pp. 339–369). Cambridge: Cambridge University Press.
Google Scholar
Klein, R., & Rai, A. (2009). Interfirm strategic information flows in logistics supply chain relationships. MIS Quarterly, 33(4), 735–762.
Kline, R. B. (2011). Principles and practice of structural equation modeling. New York: Guilford Press.
Lee, L., Petter, S., Fayard, D., & Robinson, S. (2011). On the use of partial least squares path modeling in accounting research. International Journal of Accounting Information Systems, 12(4), 305–328.
Article
Google Scholar
Loch, K. D., Straub, D. W., & Kamel, S. (2003). Diffusing the Internet in the Arab world: The role of social norms and technological culturation. IEEE Transactions on Engineering Management, 50(1), 45–63.
Article
Google Scholar
Lohmöller, J.-B. (1989). Latent variable path modeling with partial least squares. Heidelberg: Physica.
Book
Google Scholar
Lu, I. R. R., Kwan, E., Thomas, D. R., & Cedzynski, M. (2011). Two new methods for estimating structural equation models: an illustration and a comparison with two established methods. International Journal of Research in Marketing, 28(3), 258–268.
Article
Google Scholar
Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: a user’s guide. Mahwah: Lawrence Erlbaum.
Google Scholar
Marcoulides, G. A., Chin, W. W., & Saunders, C. (2012). When imprecise statistical statements become problematic: a response to Goodhue, Lewis, and Thompson. MIS Quarterly, 36(3), 717-728.
McDonald, R. P. (1996). Path analysis with composite variables. Multivariate Behavioral Research, 31(2), 239–270.
Article
Google Scholar
Milberg, S. J., Smith, H. J., & Burke, S. J. (2000). Information privacy: corporate management and national regulation. Organization Science, 11(1), 35–57.
Article
Google Scholar
Miller, R. G. (1981). Simultaneous statistical inference. New York: Wiley.
Book
Google Scholar
Monecke, A., & Leisch, F. (2012). semPLS: structural equation modeling using partial least squares. Journal of Statistical Software, 48(3), 1–32.
Google Scholar
Mulaik, S. A. (2009). Foundations of factor analysis. New York: Chapman & Hall/CRC.
Google Scholar
Netemeyer, R. G., Bearden, W. O., & Sharma, S. (2003). Scaling procedures: issues and applications. Thousand Oaks: Sage.
Google Scholar
Nunnally, J. (1978). Psychometric theory (2nd ed.). New York: McGraw-Hill.
Google Scholar
Pavlou, P. A., Liang, H., & Xue, Y. (2007). Understanding and mitigating uncertainty in online exchange relationships: a principal-agent perspective. MIS Quarterly, 31(1), 105–136.
Google Scholar
Paxton, P., Curran, P. J., Bollen, K. A., Kirby, J., & Chen, F. (2001). Monte Carlo experiments: design and implementation. Structural Equation Modeling, 8(2), 287–312.
Peng, D. X., & Lai, F. (2012). Using partial least squares in operations management research: a practical guideline and summary of past research. Journal of Operations Management, 30(6), 467–480.
Article
Google Scholar
Peter, J. P., & Churchill, G. A. (1986). Relationships among research design choices and psychometric properties of rating scales: a meta-analysis. Journal of Marketing Research, 23(1), 1–10.
Article
Google Scholar
R Core Team (2014). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Ravichandran, T., & Rai, A. (2000). Quality management in systems development: an organizational system perspective. MIS Quarterly, 24(3), 381–415.
Article
Google Scholar
Reinartz, W. J., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of Research in Marketing, 26(4), 332–344.
Article
Google Scholar
Rigdon, E. E. (2012). Rethinking partial least squares path modeling: In praise of simple methods. Long Range Planning, 45(5–6), 341–358.
Article
Google Scholar
Rigdon, E. E. (2014). Rethinking partial least squares path modeling: breaking chains and forging ahead. Long Range Planning, 47(3), 161–167.
Article
Google Scholar
Ringle, C. M., Sarstedt, M., & Mooi, E. A. (2010). Response-based segmentation using finite mixture partial least squares: theoretical foundations and an application to American Customer Satisfaction Index data. Annals of Information Systems, 8, 19–49.
Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). A critical look at the use of PLS-SEM in MIS Quarterly. MIS Quarterly, 36(1), iii–xiv.
Ringle, C. M., Sarstedt, M., & Schlittgen, R. (2014). Genetic algorithm segmentation in partial least squares structural equation modeling. OR Spectrum, 36(1), 251–276.
Article
Google Scholar
Roldán, J. L., & Sánchez-Franco, M. J. (2012). Variance-based structural equation modeling: guidelines for using partial least squares in information systems research. In M. Mora, O. Gelman, A. Steenkamp, & M. Raisinghani (Eds.), Research methodologies, innovations and philosophies in software systems engineering and information systems (pp. 193–221). Hershey: IGI Global.
Chapter
Google Scholar
Rönkkö, M., & Evermann, J. (2013). A critical examination of common beliefs about partial least squares path modeling. Organizational Research Methods, 16(3), 425–448.Sarstedt, M. & Mooi, E. A. (2014). A concise guide to market research. The process, data, and methods using IBM SPSS Statistics. Berlin: Springer.
Sarstedt, M. & Mooi, E. A. (2014). A concise guide to market research. The process, data, and methods using IBM SPSS Statistics. Berlin: Springer.
Schmitt, N. (1978). Path analysis of multitrait-multimethod matrices. Applied Psychological Measurement, 2(2), 157–173.
Article
Google Scholar
Schmitt, N., & Stults, D. M. (1986). Methodology review: analysis of multitrait-multimethod matrices. Applied Psychological Measurement, 10(1), 1–22.
Article
Google Scholar
Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561–584.
Article
Google Scholar
Shah, R., & Goldstein, S. M. (2006). Use of structural equation modeling in operations management research: looking back and forward. Journal of Operations Management, 24(2), 148–169.
Article
Google Scholar
Shook, C. L., Ketchen, D. J., Hult, G. T. M., & Kacmar, K. M. (2004). An assessment of the use of structural equation modeling in strategic management research. Strategic Management Journal, 25(4), 397–404.
Article
Google Scholar
Sosik, J. J., Kahai, S. S., & Piovoso, M. J. (2009). Silver bullet or voodoo statistics? A primer for using the partial least squares data analytic technique in group and organization research. Group Organization Management, 34(1), 5–36.
Article
Google Scholar
Tenenhaus, A., & Tenenhaus, M. (2011). Regularized generalized canonical correlation analysis. Psychometrika, 76(2), 257–284.
Article
Google Scholar
Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205.
Article
Google Scholar
Teo, T. S. H., Srivastava, S. C., & Jiang, L. (2008). Trust and electronic government success: an empirical study. Journal of Management Information Systems, 25(3), 99–132.
Article
Google Scholar
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425–478.
Google Scholar
Vilares, M. J., & Coelho, P. S. (2013). Likelihood and PLS estimators for structural equation modeling: an assessment of sample size, skewness and model misspecification effects. In J. Lita da Dilva, F. Caeiro, I. Natário, & C. A. Braumann (Eds.), Advances in regression, survival analysis, extreme values, Markov processes and other statistical applications (pp. 11–33). Berlin: Springer.
Vilares, M. J., Almeida, M. H., & Coelho, P. S. (2010). Comparison of likelihood and PLS estimators for structural equation modeling: a simulation with customer satisfaction data. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: concepts, methods and applications (pp. 289–305). Berlin: Springer.
Wold, H. (1982). Soft modeling: the basic design and some extensions. In K. G. Jöreskog & H. Wold (Eds.), Systems under indirect observations: part II (pp. 1–54). Amsterdam: North-Holland.
Google Scholar