Skip to main content
Log in

Permeability changes caused by surfactants in liposomes that model the stratum corneum lipid composition

  • Published:
Journal of the American Oil Chemists' Society

Abstract

The alterations caused by different surfactants in the permeability of liposomes formed by a lipid mixture that models the stratum corneum (SC) composition (40% ceramides, 25% cholesterol, 25% palmitic acid, and 10% cholesteryl sulfate) were investigated. The surfactant/lipid molar ratios (Re) and the bilayer/aqueous phase surfactant partition coefficients (K) were determined at two sublytic levels. The selected surfactant were sodium dodecyl sulfate (SDS); sodium dodecyl ether sulfate (SDES) to assess the influence of the ethylene oxide groups on the anionic surfactant’s behavior; Triton X-100 (OP-10EO) and dodecyl betaine (D-Bet) as representatives of nonionic and amphoteric surfactants. Permeability alterations were determined by monitoring the increase in the fluorescence intensity of liposomes due to the 5(6) carboxyfluorescein (CF) released from the interior of vesicles. The SC liposomes/surfactant sublytic interactions were mainly ruled by the action of surfactant monomers. OP-10EO showed the highest ability to alter the permeability of bilayers and the highest affinity with these structures, whereas D-Bet showed the lowest tendencies. Although SDS and SDES exhibited similar activity at 50% CF release (similar Re values), SDES appeared to be more active at 100% CF release, its affinity with bilayers being also increased. The different ability exhibited by SDS, SDES, and D-Bet (same alkyl chainlength) to alter the permeability of SC liposomes emphasizes the role played by the polar part of these surfactants in this interaction. Different trends in the evolution of Re and K were observed when comparing the results with those reported for phosphatidylcholine (PC) liposomes. Thus, whereas SC liposomes appeared to be more resistant to the action of surfactants, the surfactant affinity with SC bilayers was always greater than that reported for PC bilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foresta, B., F. Henao, and P. Champeil, Kinetic Characterization of the Perturbation by Dodecylmaltoside of Sarcoplastic Reticulum Ca2+-ATPase, Eur. J. Biochem. 209:1023–1034 (1992).

    Article  PubMed  Google Scholar 

  2. Wach, A., N.A. Dencher, and P. Gräber, Co-reconstitution of Plasma Membranes H+-ATPase from Yeast and Bacteriorhodopsin into Liposomes. ATP Hydrolysis as a Function of External and Internal pH, Eur. J. Biochem. 214:563–568 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. Kerry, C.J., H.L. Sudan, K. Abutidze, I.R. Mellor, E.A. Barnard, and P.N.R. Usherwood, Reconstitution of Glutamate Receptor Proteins Purified from Xenopus Central Nervous System into Artificial Bilayers, Mol. Pharmacol. 44:142–152 (1993).

    PubMed  CAS  Google Scholar 

  4. Partearroyo, M.A., M.A. Urbaneja, and F.M. Goñi, Effective Detergent/Lipid Ratios in the Solubilization of Phosphatidylcholine Vesicles by Triton X-100, FEBS Lett 302:138–140 (1992).

    Article  PubMed  CAS  Google Scholar 

  5. Levy, D., A. Gulik, M. Seigneuret, and J.L. Rigaud, Phospholipid Vesicle Solubilization and Reconstitution by Detergents. Symmetrical Analysis of the Two Processes Using Octaethylene Glycol Mono-n-dodecyl Ether, Biochemistry 29:9480–9488 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. Urbaneja, M.A., A. Alonso, J.M. González-Mañas, F.M. Goñi, M.A. Partearroyo, M. Tribout, and S. Paredes, Detergent Solubilization of Phospholipid Vesicles. Effect of Electric Charge, Biochem. J. 270:305–308 (1990).

    PubMed  CAS  Google Scholar 

  7. Kragh-Hansen, U., M. le Marie, J.P. Nöel, T. Gulik-Krzywicki, and J.V. Møller, Transition Steps in the Solubilization of Protein-Containing Membranes and Liposomes by Nonionic Detergent, Biochemistry 32:1648–1656 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. Lichtenberg, D., Characterization of the Solubilization of Lipid Bilayers by Surfactants, Biochim. Biophys. Acta 821:470–478 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. Friberg, S.E., L.B. Goldsmith, I. Kayali, and H. Suhaimi, in Interfacial Phenomena in Biological Systems, Surfactant Science Series, Vol. 39, edited by M. Bender, Marcel Dekker, Inc., New York, 1991, pp. 3–32.

    Google Scholar 

  10. Bouwstra, J.A., G.S. Gooris, W. Bras, and D.T. Downing, Lipid Organization in Pig Stratum Corneum, J. Lipid Res. 36:685–695 (1995).

    PubMed  CAS  Google Scholar 

  11. Abraham, W., P.W. Wertz, and D.T. Downing, Linoleate-Rich Acylglucosylceramides of Pig Epidermis: Structure Determination by Proton Magnetic Resonance. Ibid.:761–766 (1985).

    PubMed  CAS  Google Scholar 

  12. Ranasingle, A.W., P.W. Wertz, D.T. Downing, and J.C. Mackeine, Lipid Composition of Cohesive and Desquamated Corneocytes from Mouse Ear Skin, J. Invest. Dermatol. 86:187–190 (1986).

    Article  Google Scholar 

  13. Imokawa, G., A. Abe, K. Jin, Y. Higaki, M. Kamashima, and A. Hidano, Decreased Level of Ceramides in Stratum Corneum of Atopic Dermatitis: An Etiologic Factor in Atopic Dry Skin? J. Invest. Dermatol. 96:523–526 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. Wertz, P.W., and D.T. Downing, Stratum Corneum: Biological an Biochemical Considerations, in Transdermal Drug Delivery. Developmental Issues and Research Initiatives, edited by J. Hadgraft and R.H. Guy, Marcel Dekker, Inc. New York, 1989, pp. 1–22.

    Google Scholar 

  15. Wertz, P.W., W. Abraham, L. Landman, and D.T. Downing, Preparation of Liposomes from Stratum Corneum Lipids, J. Invest. Dermatol. 87:582–584 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. Wertz, P.W., Liposome Dermatics, Chemical Aspects of the Skin Lipid Approach, in Liposome Dermatics (Griesbach Conference), edited by O. Braun-Falco, H.C. Korting, and H. Maibach, Springer-Verlag, Berlin, Heidelberg, 1992, pp. 38–43.

    Google Scholar 

  17. Abraham, W., P.W. Wertz, L. Landman, and D.T. Downing, Stratum Corneum Lipid Liposomes: Calcium-Induced Transformation into Lamellar Sheets, J. Invest. Dermatol. 88:212–214 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. Downing, D.T., W. Abraham, B.K. Wegner, K.W. Willman, and J.M. Marshall, Partition of Sodium Dodecyl Sulfate into Stratum Corneum Lipid Liposomes, Arch. Dermatol. Res. 285:151–157 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. Blume, A., M. Jansen, M. Ghyczy, and J. Gareiss, Interaction of Phospholipid Liposomes with Lipid Model Mixtures for Stratum Corneum Lipids, Int. J. Pharm. 99:219–228 (1993).

    Article  Google Scholar 

  20. de la Maza, A., and J.L. Parra, Vesicle-Micelle Structural Transitions of Phosphatidylcholine Bilayers and Triton X-100, Biochem. J. 303:907–914 (1994).

    PubMed  Google Scholar 

  21. de la Maza, A., and J.L. Parra, Structural Phase Transitions Involved in the Interaction of Phospholipid Bilayers with Octyl Glucoside, Eur. J. Biochem. 226:1029–1038 (1994).

    Article  PubMed  Google Scholar 

  22. de la Maza, A., and J.L. Parra, Solubilization of Unilamellar Liposomes by Betaine-type Zwitterionic/Anionic Surfactant Systems, J. Am. Oil Chem. Soc. 72:131–136 (1995).

    Google Scholar 

  23. de la Maza, A., A.M. Manich, L. Coderch, P. Bosch, and J.L. Parra, The Formation of Liposomes in vitro by Mixtures of Lipids Modeling the Composition of the Stratum Corneum, Colloids and Surfaces A: Physicochem. Eng. Aspects 101:9–19 (1995).

    Article  Google Scholar 

  24. Edwards, K., M. Almgren, J. Bellare, and W. Brown, Effects of Triton X-100 on Sonicated Lecithin Vesicles, Langmuir 5:473–478 (1989).

    Article  CAS  Google Scholar 

  25. Paternostre, M.T., M. Roux, and J.L. Rigaud, Mechanisms of Membrane Protein Insertion into Liposomes During Reconstitution Procedures Involving the Use of Detergents. 1. Solubilization of Large Unilamellar Liposomes (Prepared by Reverse Phase Evaporation) by Triton X-100, Octyl Glucoside and Sodium Cholate, Biochemistry 27:2668–2677 (1988).

    Article  PubMed  CAS  Google Scholar 

  26. Ruiz, J., F.M. Goñi, and A. Alonso, Surfactant-Induced Release of Liposomal Contents. A Survey of Methods and Results, Biochim. Biophys. Acta 937:127–134 (1988).

    Article  PubMed  CAS  Google Scholar 

  27. Rosen, M.J., Purification of Surfactants for Studies of Their Fundamental Surface Properties, J. Colloid Interface Sci. 79:587–588 (1981).

    Article  CAS  Google Scholar 

  28. Weinstein, J.N., E. Ralston, L.D. Leserman, R.D. Klausner, P. Dragsten, P. Henkart, and R. Blumenthal, Self-Quenching of Carboxyfluorescein Fluorescence: Uses in Studying Liposome Stability and Liposome Cell Interaction, in Liposome Technology, edited by G. Gregoriadis, CRC Press, Boca Raton, Vol. III, 1986, pp. 183–204.

    Google Scholar 

  29. Ackman, R.G., C.A. Mc Leod, and A.K. Banerjee, An Overview of Analyses by Chromarod-Iatroscan TLC-FID, J. Planar Chrom. 3:450–490 (1990).

    CAS  Google Scholar 

  30. Almog, S., B.J. Litman, W. Wimley, J. Cohen, E.J. Wachtel, Y. Barenholz, A. Ben-Shaul, and D. Lichtenberg, States of Aggregation and Phase Transformations in Mixtures of Phosphatidylcholine and Octyl Glucoside. Biochemistry 29:4582–4592 (1990).

    Article  PubMed  CAS  Google Scholar 

  31. Schurtenberger, P., N. Mazer, and W. Känzig, Micelle to Vesicle Transition in Aqueous Solutions of Bile Salt and Lecithin, J. Phys. Chem. 89:1042–1049 (1985).

    Article  CAS  Google Scholar 

  32. Lunkenheimer, K., and D. Wantke, Determination of the Surface Tension of Surfactant Solutions Applying the Method of Lecomte du Noüy (Ring Tensiometer), Colloid and Polymer Sci. 259:354–366 (1981).

    Article  CAS  Google Scholar 

  33. de la Maza, A., J. Sanchez, J.L. Parra, M.T. Garcia, and I. Ribosa, Permeability Changes of Phospholipid Bilayers Caused by Surfactants, J. Amer. Oil Chem. Soc. 68:315–319 (1991).

    Google Scholar 

  34. de la Maza, A., and J.L. Parra, Solubilization of Phospholipid Bilayers Caused by Surfactants, Ibid.:699–706 (1993).

    Google Scholar 

  35. Schubert, R., K. Beyer, H. Wolburg, and K.H. Schmidt, Structural Changes in Membranes of Large Unilamellar Vesicles After Adding of Sodium Cholate, Biochemistry 25:5263–5269 (1986).

    Article  PubMed  CAS  Google Scholar 

  36. de la Maza, A., and J.L. Parra, Alterations in Phospholipid Bilayers Caused by Oxyethylenated Nonylphenol Surfactants, Arch. Biochem. Biophys. 329:1–8 (1996).

    Article  PubMed  Google Scholar 

  37. Ernst, R., and E.J. Miller, in Amphoteric Surfactants, Surfactant Science Series, Vol. 12, edited by B.R. Bluestein and C.L. Hilton, Marcel Dekker, Inc., New York, 1982, pp. 71–174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

de la Maza, A., Coderch, L., Lopez, O. et al. Permeability changes caused by surfactants in liposomes that model the stratum corneum lipid composition. J Amer Oil Chem Soc 74, 1–8 (1997). https://doi.org/10.1007/s11746-997-0111-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-997-0111-3

Key Words

Navigation