Skip to main content
Log in

Mapping the Chemical Variability of Vegetable Lecithins

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

There is an increasing interest in vegetable lecithins because of their broad usage in many food and cosmetic applications. In this research, the chemical variability of commercial lecithins from soy, sunflower and rapeseed were mapped. The acetone insoluble matter, total phospholipid content and their compositions were determined. Significant correlation coefficients were observed between phosphatidylcholine and phosphatidic acid (−0.84), phosphatidylethanolamine and phosphatidylinositol (−0.86), monounsaturated fatty acid and polyunsaturated fatty acid (−0.97). Principal component analysis was used to group the lecithins according to their sources. Rapeseed lecithin was found to be the most different product compared to soy and sunflower lecithin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bueschelberger HG (2004) Lecithins. In: Whitehurst RJ (ed) Emulsifiers in food technology. Blackwell Publishing Ltd, UK, pp 1–39

    Chapter  Google Scholar 

  2. Guo Z, Vikbjerg AF, Xu XB (2005) Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol Adv 23(3):203–259

    Article  CAS  Google Scholar 

  3. Helmerich G, Koehler P (2005) Functional properties of individual classes of phospholipids in breadmaking. J Cereal Sci 42(2):233–241

    Article  CAS  Google Scholar 

  4. US Environmental Protection Agency (2003) Lysophosphatidylethanolamine—Federal Register Notices. http://www.epa.gov/oppbppd1/biopesticides/ingredients_keep/fr_notices/frnotices_105120.htm

  5. USDA (2013) Adoption of Genetically Engineered Crops in the U. S. http://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us.aspx#.UfOMAKBjt_M

  6. WHO (2013) Genetically modified foods. http://www.who.int/foodsafety/publications/biotech/20questions/en/

  7. Nieuwenhuyzen W, Tomas MC (2008) Update on vegetable lecithin and phospholipid technologies. Eur J Lipid Sci Technol 110(5):472–486

    Article  Google Scholar 

  8. Everitt B (2005) An R and S-Plus® companion to multivariate analysis. Springer-Verlag London Limited, UK

    Book  Google Scholar 

  9. USDA (2013) Oilseeds: world markets and trade. http://www.fas.usda.gov/psdonline/circulars/oilseeds.pdf

  10. Gunstone FD (2002) Vegetable oils in food technology: composition, properties and uses. Blackwell Publishing Ltd, UK

    Google Scholar 

  11. Lecico (2012) Organic Soya- and sunflower lecithin. http://www.lecico.de/de/produkte/bio-lecithin

  12. Jenkins GM, Frohman MA (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62(19–20):2305–2316

    Article  CAS  Google Scholar 

  13. Pettitt TR, McDermott M, Saqib KM, Shimwell N, Wakelam MJ (2001) Phospholipase D1b and D2a generate structurally identical phosphatidic acid species in mammalian cells. Biochem J 360:707–715

    Article  CAS  Google Scholar 

  14. Momchilova A, Markovska T (1999) Phosphatidylethanolamine and phosphatidylcholine are sources of diacylglycerol in ras-transformed NIH 3T3 fibroblasts. Int J Biochem Cell Biol 31(2):311–318

    Article  CAS  Google Scholar 

  15. Wu YZ, Wang T (2004) Fractionation of crude soybean lecithin with aqueous ethanol. J Am Oil Chem Soc 81(7):697–704

    Article  CAS  Google Scholar 

  16. Lucas M (1999) Lecithins: properties and applications. Lucas Meyer

  17. Vance DE, Vance JE (2008) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  18. Batenburg AM, Dekruijff B (1988) Modulation of membrane-surface curvature by peptide-lipid interactions. Biosci Rep 8(4):299–307

    Article  CAS  Google Scholar 

  19. Kumar VV (1991) Complementary molecular shapes and additivity of the packing parameter of lipids. Proc Natl Acad Sci USA 88(2):444–448

    Article  CAS  Google Scholar 

  20. Omidi H, Tahmasebi Z, Naghdi Badi HA, Torabi H, Miransari M (2010) Fatty acid composition of canola (Brassica napus L.), as affected by agronomical, genotypic and environmental parameters. C R Biol 333(3):248–254

    Article  CAS  Google Scholar 

  21. Ulbrich-Hofmann R, Lerchner A, Oblozinsky M, Bezakova L (2005) Phospholipase D and its application in biocatalysis. Biotechnol Lett 27(8):535–544

    Article  CAS  Google Scholar 

  22. Devaiah SP, Pan XQ, Hong YY, Roth M, Welti R, Wang XM (2007) Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant J 50(6):950–957

    Article  CAS  Google Scholar 

  23. Urikura M, Morishige J, Tanaka T, Satouchi K (2012) Phosphatidic acid production in the processing of cabbage leaves. J Agric Food Chem 60(45):11359–11365

    Article  CAS  Google Scholar 

  24. Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10(8):368–375

    Article  CAS  Google Scholar 

  25. Henderson CM, Zeno WF, Lerno LA, Longo ML, Block DE (2013) Fermentation temperature modulates phosphatidylethanolamine and phosphatidylinositol levels in the cell membrane of Saccharomyces cerevisiae. Appl Environ Microbiol 79(17):5345–5356

    Article  CAS  Google Scholar 

  26. Meij JA, Paolillo G, Bezstarosti K, Verdouw P, Panagia V, Lamers JJ (1989) Discrete interactions between phosphatidylethanolamine-N-methylation and phosphatidylinositolbisphosphate hydrolysis in rat myocardium. Mol Cell Biochem 90(2):137–144

    Article  CAS  Google Scholar 

  27. Bachlava E, Burton JW, Brownie C, Wang S, Auclair J, Cardinal AJ (2008) Heritability of oleic acid content in soybean seed oil and its genetic correlation with fatty acid and agronomic traits. Crop Sci 48(5):1764–1772

    Article  CAS  Google Scholar 

  28. Pritchard FM, Eagles HA, Norton RM, Salisbury PA, Nicolas M (2000) Environmental effects on seed composition of Victorian canola. Aust J Exp Agric 40(5):679–685

    Article  Google Scholar 

  29. Jaureguy LM, Rodriguez FL, Zhang LL, Chen PY, Brye K, Oosterhuis D, Mauromoustakos A, Clark JR (2013) Planting date and delayed harvest effects on Soybean seed composition. Crop Sci 53(5):2162–2175

    Article  CAS  Google Scholar 

  30. Slack CR, Browse JA (1984) Vol 1. Development. In: Murray DR (ed) Seed Physiology. Academic Press Australia, North Ryde, pp 209–244

    Google Scholar 

  31. Selmair PL (2009) Structure-function relationship of glycolipids in breadmaking. PhD thesis. Fakultät für Chemie, Technische Universität München

Download references

Acknowledgments

This research was supported by Innovatie door Wetenschap en Technologie (IWT), Brussels, Belgium (project number: IWT 100382). The authors would like to thank Spectral Service GmbH, Köln, Germany for providing soy, sunflower and rapeseed standard lecithins. Special thanks to Dr. Vera van Hoed, Puratos group, Belgium for checking the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Tuyet Nguyen.

About this article

Cite this article

Nguyen, M.T., Van de Walle, D., Petit, C. et al. Mapping the Chemical Variability of Vegetable Lecithins. J Am Oil Chem Soc 91, 1093–1101 (2014). https://doi.org/10.1007/s11746-014-2455-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-014-2455-9

Keywords

Navigation