Lipids

, 33:689 | Cite as

Protective effects of lemon flavonoids on oxidative stress in diabetic rats

  • Yoshiaki Miyake
  • Kanefumi Yamamoto
  • Nobuko Tsujihara
  • Toshihiko Osawa
Article

Abstract

The effects of lemon flavonoids, as crude flavonoids prepared from lemon juice, were investigated in diabetic rats. The oxidative stress of eriocitrin (eriodictyol 7-O-β-rutinoside) and hesperidin (hesperetin 7-O-β-rutinoside) on streptozotocin-induced diabetic rats was investigated. Diabetic rats were given a diet which contained 0.2% crude flavonoids, 0.2% eriocitrin, and 0.2% hesperidin. After the 28-d feeding period, the concentration of the thiobarbituric acid- reactive substance in the serum, liver, and kidney of diabetic rats administered crude flavonoids, eriocitrin, and hesperidin significantly decreased as compared with that of the diabetic group. The levels of 8-hydroxydeoxyguanosine, which is exchanged from deoxyguanosine owing to oxidative stress, in the urine of diabetic rats administered eriocitrin and hesperidin significantly decreased as compared with that of the diabetic rat group. Crude flavonoids, eriocitrin, and hesperidin suppressed the oxidative stress in the diabetic rats. These results demonstrated that dietary lemon flavonoids of eriocitrin and hesperidin play a role as antioxidant in vivo.

Abbreviations

CAT

catalase

CF

crude flavonoids

GSH

reduced gluthathione

GSH-Px

glutathione peroxidase

GST

glutathione S-transferase

8-OHdG

8-hydroxydeoxyguanosine

SOD

superoxide dismutase

STZ

streptozotocin

TBARS

thiobarbituric acid-reactive substances

References

  1. 1.
    Bracke, M.E., Bruyneel, E.A., Vermeulen, S.J., Vennekens, K.I., Marck, V.V., and Mareel, M.M. (1994) Citrus Flavonoid Effect on Tumor Invasion and Metastasis, Food Technol. 48, 121–124.Google Scholar
  2. 2.
    Middleton, E., and Kandaswami, C. (1994) Potential Health-Promoting Properties of Citrus Flavonoids, Food Technol. 48, 115–119.Google Scholar
  3. 3.
    Attaway, J.A. (1994) Citrus Juice Flavonoids with Anticarcinogenic and Antitumor Properties, in Food Phytochemicals for Cancer Prevention. I Fruits and Vegetables (Huang, M.T., Osawa, T., Ho, C.T., and Rosen, R.T., eds.) pp. 240–248, American Chemical Society, Washington, D.C.Google Scholar
  4. 4.
    Miyake, Y., Yamamoto, K., and Osawa, T. (1997) Isolation of Eriocitrin (eriodictyol 7-rutinoside) from Lemon Fruit (Citrus limon Burm. f.) and Its Antioxidative Activity, Food Sci. Technol. Int. Tokyo 3, 84–89.CrossRefGoogle Scholar
  5. 5.
    Miyake, Y., Yamamoto, K., Morimitsu, Y., and Osawa, T. (1997) Isolation of C-Glucosylflavone from Lemon Peel and Antioxidative Activity of Flavonoid Compounds in Lemon Fruit, J. Agric. Food Chem. 45, 4619–4623.CrossRefGoogle Scholar
  6. 6.
    Miyake, Y., Yamamoto, K., Morimitsu, Y., and Osawa, T. (1998) Characteristics of Antioxidative Flavonoid Glycosides in Lemon Fruit, Food Sci. Technol. Int. Tokyo 4, 48–53.Google Scholar
  7. 7.
    Cutler, R.G. (1992) Genetic Stability and Oxidative Stress, in Free Radicals and Aging (Emerit, I., and Chance, B., eds.) pp. 31–46, Birkhauser Verlag, Basel/Switzerland.Google Scholar
  8. 8.
    Cutler, R.G. (1984) Antioxidants, Aging, and Longevity, in Free Radicals in Biology (Pryor, W.A., ed.) pp. 371–428, Academic Press, New York.Google Scholar
  9. 9.
    Frankel, E.N., Kanner J., German, J.B., Parks, E., and Kinsella, J.E. (1993) Inhibition of Oxidation of Human Low-Density Lipoprotein by Phenolic Substances in Red Wine, Lancet 341, 454–457.PubMedCrossRefGoogle Scholar
  10. 10.
    Miyake, Y., Yamamoto, K., and Osawa, T. (1997) Metabolism of Antioxidant in Lemon Fruit (Citrus limon Burm. f.) by Human Intestinal Bacteria, J. Agric. Food Chem. 45, 3738–3742.CrossRefGoogle Scholar
  11. 11.
    Bucala, R., Makita, Z., Koschinsky, T., Cerami, A., and Vlassara, H. (1993) Lipid-Advanced Glycosylation: Pathway for Lipid Oxidation in vivo, Proc. Natl. Acad. Sci. USA 90, 6434–6438.PubMedCrossRefGoogle Scholar
  12. 12.
    Nourooz-Zadeh, J., Rahimi, A., Tajaddini-Sarmadi, J., Tritschler, H., Rosen, P., Halliwell, B., and Betteridge, D.J. (1997) Relationships Between Plasma Measures of Oxidative Stress and Metabolic Control in NIDDM, Diabetologia 40, 647–653.PubMedCrossRefGoogle Scholar
  13. 13.
    Baynes, J.W. (1991) Role of Oxidative Stress in Development of Complications in Diabetes, Diabetes 40, 405–412.PubMedGoogle Scholar
  14. 14.
    Rakieten, N., Rakieten, M.L., and Nadkarni, M.V. (1963) Studies on the Diabetogenic Action of Streptozotocin, Cancer Chemother. Rep. 29, 91–98.Google Scholar
  15. 15.
    Yagi, K. (1976) A Simple Fluorometric Assay for Lipoperoxide in Blood Plasma, Biochem. Med. 15, 212–216.PubMedCrossRefGoogle Scholar
  16. 16.
    Uchiyama, M., and Mihara, M. (1978) Determination of Malonaldehyde Precursor in Tissue by Thiobarbituric Acid Test, Anal. Biochem. 86, 271–278.PubMedCrossRefGoogle Scholar
  17. 17.
    Erhola, M., Toyokuni, S., Okada, K., Tanaka, T., Hiai, H., Ochi, H., Uchida, K., Osawa, T., Nieminen, M.M., Alho, H., and Kellokumpu-Lehinen, P. (1997) Biomarker Evidence of DNA Oxidation in Lung Cancer Patients: Association of Urinary 8-Hydroxy-2′-deoxyguanosine Excretion with Radiotherapy, Chemotherapy, and Response to Treatment, FEBS Lett. 409, 287–291.PubMedCrossRefGoogle Scholar
  18. 18.
    Toyokuni, S., Tanaka, T., Hattori, Y., Nishiyama, Y., Yoshida, A., Uchida, K., Hiai, H., Ochi, H., and Osawa, T. (1997) Quantitative Immunohistochemical Determination of 8-Hydroxy-2′-deoxyguanosine by a Monoclonal Antibody N45.1: Its Application to Ferric Nitrilotriacetate-induced Renal Carcinogenesis Model, Lab. Invest. 76, 365–374.PubMedGoogle Scholar
  19. 19.
    Bosnes, R.W., and Taussky, H.H. (1945) On the Colorimetric Determination of Creatinine by the Jaffe Reaction, J. Biol. Chem. 158, 581–591.Google Scholar
  20. 20.
    McCord, J.M., and Fridovich, I. (1969) Superoxide Dismutase. J. Biol. Chem. 244, 6049–6055.PubMedGoogle Scholar
  21. 21.
    Beers, R.F., Jr., and Sizer, I.W. (1952) A Spectrophotometric Method for Measuring the Breakdown of Hydrogen Peroxide by Catalase, J. Biol. Chem. 195, 133–140.PubMedGoogle Scholar
  22. 22.
    Lawrence, R.A., and Burk, R.F. (1976) Glutathione Peroxidase Activity in Selenium-deficient Rat Liver, Biochem. Biophys. Res. Commun. 71, 952–958.PubMedCrossRefGoogle Scholar
  23. 23.
    Habig, W.H., Pabst, M.P., and Jakoby, W.B. (1974) Glutathione S-Transferase, J. Biol. Chem. 249, 7130–7139.PubMedGoogle Scholar
  24. 24.
    Wohaieb, S.A., and Godin, D.V. (1987) Alterations in Tissue Antioxidant Systems in the Spontaneously Diabetic (BB Wistar) Rat, Can. J. Physiol. Pharmacol. 65, 2191–2195.PubMedGoogle Scholar
  25. 25.
    Mak, D.H.F., Ip, S.P., Li, P.C., Poon, M.K.T., and Ko, K.M. (1996) Alteration in Tissue Glutathione Antioxidant System in Streptozotocin-induced Diabetic Rats, Mol. Cell Biochem. 162, 153–158.PubMedCrossRefGoogle Scholar
  26. 26.
    Kawaguchi, K., Mizuno, T., Aida, K., and Uchino, K. (1997) Hesperidin as an Inhibitor of Lipase from Porcine Pancreas and Pseudomonas, Biosci. Biotech. Biochem. 61, 102–104.CrossRefGoogle Scholar
  27. 27.
    Kakkar, R., Kalra, J., Mantha, S.V., and Prasad, K. (1995) Lipid Peroxidation and Activity of Antioxidant Enzymes in Diabetic Rats, Mol. Cell Biochem. 151, 113–119.PubMedCrossRefGoogle Scholar
  28. 28.
    Wolff, S.P., and Dean, R.T. (1987) Glucose Autoxidation and Protein Modification, Biochem. J. 245, 243–250.PubMedGoogle Scholar
  29. 29.
    Gerbitz, K.D. (1992) Does the Mitochondrial DNA Play a Role in the Pathogensis of Diabetes, Diabetologia 35, 1181–1186.PubMedCrossRefGoogle Scholar
  30. 30.
    Takasu, N., Komiya, I., Asawa, T., Nagasawa, Y., and Yamada, T. (1991) Streptozocin- and Alloxan-induced H2O2 Generation and DNA Fragmentation in Pancreatic Islets, Diabetes 40, 1141–1145.PubMedGoogle Scholar
  31. 31.
    Meister, A. (1988) Glutathione Metabolism and Its Selective Modification, J. Biol. Chem. 263, 17205–17208.PubMedGoogle Scholar

Copyright information

© AOCS Press 1998

Authors and Affiliations

  • Yoshiaki Miyake
    • 1
  • Kanefumi Yamamoto
    • 1
  • Nobuko Tsujihara
    • 2
  • Toshihiko Osawa
    • 3
  1. 1.Central Research Laboratory of Pokka Corporation, Ltd.AichiJapan
  2. 2.College of Nagoya Women's UniversityNagoya
  3. 3.Laboratory of Food BiodynamicsNagoya University Graduate School of Bioagricultural SciencesNagoyaJapan

Personalised recommendations