Skip to main content
Log in

Lipids of Thermococcus hydrothermalis, an archaea isolated from a deep-sea hydrothermal vent

  • Published:
Lipids

Abstract

The membrane lipids of a deep-sea hydrothermal vent archaea, Thermococcus hydrothermalis, were isolated, purified, and structurally characterized. On the basis of acid methanolysis and spectroscopic studies, the polar lipids, amounting to 4.5% (w/w) of the dry cells, comprised diphytanyl glycerol diethers and dibiphytanyldiglycerol tetraethers, in a 45∶55 ratio. No cyclopentane ring was present in the tetraethers. From the neutral lipids, accounting for 0.4% (w/w) of the dry cells, besides low amounts of di- and tetraethers occurring in a free form, four acyclic tetraterpenoid hydrocarbons, di- and triunsaturated were identified. All were structurally related to lycopane. The presence of these hydrocarbons provides some evidence that lycopane, widely distributed in oceans, could be derived, at least partially, from the hydrocarbons synthesized by some thermophilic Archaea. Finally, analysis of the uninoculated culture medium indicates that fatty acid derivatives and some steroid and triterpenoid compounds identified in the lipidic extract of the archaea originated from the culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CC:

column chromatography

DMDS:

dimethyl disulfide

FAB-MS:

fast atom bombardment-mass spectrometry

GC:

gas chromatography

GC-MS:

gas chromatography-mass spectrometry

TLC:

thin-layer chromatography

References

  1. De Rosa, M., Gambacorta, A., and Gliozzi, A. (1986) Structure, Biosynthesis and Physicochemical Properties of Archaebacterial Lipids, Microbiol. Rev. 50, 70–80.

    PubMed  Google Scholar 

  2. De Rosa, M., Gambarcota, A., Trincone, A., Basso, A., Zillig, W., and Holz, I. (1987) Lipids of Thermococcus celer, a Sulfur-Reducing Archaebacterium: Structure and Biosynthesis, Syst. Appl. Microbiol. 9, 1–5.

    Google Scholar 

  3. Jones, W.J., Stugard, C.E., and Jannasch, H.W. (1989) Comparison of Thermophilic Methanogens from Submarine Hydrothermal Vents, Arch. Microbiol. 151, 314–318.

    Article  CAS  Google Scholar 

  4. Deming, J.W., and Baross, J.A. (1993) Deep-Sea Smokers: Windows to a Subsurface Biosphere? Geochim. Cosmochim. Acta 57, 3219–3230.

    Article  PubMed  CAS  Google Scholar 

  5. Antoine, E., Guezennec, J., Meunier, J.R., Lesongeur, F., and Barbier, G. (1995) Thermococcus from Deep-Sea Hydrothermal Guaymas Basin, Curr. Microbiol. 31, 186–192.

    Article  CAS  Google Scholar 

  6. Marteinsson, V.T., Watrin, L., Prieur, D., Caprais, J.C., Raguénès, G., and Erauso, G. (1995) Phenotypic Characterization, DNA Similarities and Protein Profiles of Twenty Sulfur-Metabolizing Hyperthermophilic Anaerobic Archae from Hydrothermal Vents in the Southwestern Pacific Ocean, Int. J. Syst. Bacteriol. 45, 623–632.

    Article  CAS  Google Scholar 

  7. Gliozzi, A., Paoli, G., De Rosa, M., and Gambarcota, A. (1983) Effect of Isoprenoid Cyclization on the Transition Temperature of Lipids in Thermophilic Archaebacteria, Biochim. Biophys. Acta 735, 234–242.

    Article  CAS  Google Scholar 

  8. Langworthy, T.A. (1985) Lipids of Archaebacteria, in The Bacteria: Archaebacteria (Woese, C.R., and Wolfe, R.S., eds.), Vol. 8, pp. 459–498, Academic Press, New York.

    Google Scholar 

  9. Zillig, W., Holz, I., Kenk, H.P., Trent, J., Wunderl, S., Janekovic, D., Imsel, E., and Hass, B. (1987) Pyrococcus woesi, sp. nov., an Ultra-Thermophilic Marine Archaebacterium, Representing a Novel Order, Thermococcales, Syst. Appl. Microbiol. 9, 62–70.

    CAS  Google Scholar 

  10. Kurr, M., Huber, R., König, H., Jannasch, H.W., Fricke, H., Trincone, A., Kristjansson, J.K., and Stetter, K.O. (1991) Methanopyrus kandleri, gen. and sp. nov., Represents a Novel Group of Hyperthermophilic Methanogens, Growing at 110°C, Arch. Microbiol. 156, 239–247.

    Article  CAS  Google Scholar 

  11. Gambacorta, A., Gliozzi, A., and De Rosa, M. (1995) Archaeal Lipids and Their Biotechnological Applications, World J. Microbiol. Biotech. 11, 115–131.

    Article  CAS  Google Scholar 

  12. Zillig, W., Holz, I., Janekovic, D., Schäfer, W., and Reiter, W.D. (1983) The Archaebacterium Thermococcus celer Represents a Novel Genus Within the Thermophilic Branch of the Archaebacteria, Syst. Appl. Microbiol. 4, 88–94.

    Google Scholar 

  13. Miroshnichenko, M.L., Bonch-Osmolovskaya, E.A., Neuner, A., Kostrikina, N.A., Chernych, N.A., and Alekseev, V.A. (1989) Thermococcus stetteri sp. nov., a New Extremely Thermophilic Marine Sulfur-Metabolizing Archaebacterium, Syst. Appl. Microbiol. 12, 257–262.

    Google Scholar 

  14. Neuner, A., Jannasch, H.W., Belkin, S., and Stetter, K.O. (1990) Thermococcus litoralis sp. nov.: A New Species of Extremely Thermophilic Marine Archaebacteria, Arch. Microbiol. 153, 205–207.

    Article  Google Scholar 

  15. Kobayashi, T., Kwak, Y.S., Akiba, T., Kudo, T., and Horikoshi, K. (1994) Thermococcus profundus sp. nov., a New Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent, Syst. Appl. Microbiol. 17, 232–236.

    CAS  Google Scholar 

  16. Huber, R., Stohr, J., Rachel, R., Burggraf, S., Jannasch, H., and Stetter, K.O. (1995) Thermococcus chitonophagus sp. nov., a Novel, Chitin-Degrading, Hyperthermophilic Archaeum from a Deep-Sea Hydrothermal Vent Environment, Arch. Microbiol. 164, 255–264.

    Article  CAS  Google Scholar 

  17. Gonzalez, J.M., Kato, C., and Horikoshi, K. (1995) Thermococcus peptonophilus sp. nov., a Fast-Growing, Extremely Thermophilic Archaebacterium Isolated from a Deep-Sea Hydrothermal Vent, Arch. Microbiol. 164, 159–164.

    Article  PubMed  CAS  Google Scholar 

  18. Keller, M., Braun, F.-J., Dirmeier, R., Hafenbradl, D., Burggraf, S., Rachel, R., and Stetter, K.O. (1995) Thermococcus alcaliphilus sp. nov., a New Hyperthermophilic Archaeum Growing on Polysulfide at Alkaline pH, Arch. Microbiol. 164, 390–395.

    Article  PubMed  CAS  Google Scholar 

  19. Godfroy, A., Lesongeur, F., Raguenes, G., Querellou, J., Antoine, E., Meunier, J.R., Guezennec, J., and Barbier, G. (1997) Thermococcus hydrothermalis sp.nov., a New Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Bact. 47, 622–626.

    Article  CAS  Google Scholar 

  20. Canganella, F., Jones, W.J., Gambacorta, A., and Antranikian, G. (1997) Biochemical and Phylogenetic Characterization of Two Novel Deep-Sea Thermococcus Isolates with Potentially Biotechnological Applications, Arch. Microbiol. 167, 233–238.

    Article  PubMed  CAS  Google Scholar 

  21. Metzger, P., and Casadevall, A. (1987) Lycopadiene, a Tetraterpenoid Hydrocarbon from New Strains of the Green Alga Botryococcus braunii, Tetrahedron Lett. 28, 3931–3934.

    Article  CAS  Google Scholar 

  22. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  23. Scribe, P., Pepe, C., Barouxis, A., Fuche, C., Dagaut, J., and Saliot, A. (1990) Determination de la Position de l'Insaturation des Mono-ènes par Chromatographie en Phase Gazeuse Capillaire-Spectrometrie de Masse (CGS:SM) des Dérivés Diméthyl-Disulfide: Application à l'Analyse d'un mélange Complexe d'Alcènes, Analusis 18, 284–288.

    CAS  Google Scholar 

  24. De Rosa, M., De Rosa, S., and Gambacorta, A. (1977) 13C-NMR Assignments and Biosynthetic Data for the Ether Lipids of Caldariella, Phytochemistry 16, 1909–1912.

    Article  Google Scholar 

  25. De Rosa, M., De Rosa, S., Gambacorta, A., and Bu'Lock, J.D. (1980) Structure of Calditol, a New Branched-Chain Nonitol, and of the Derived Tetraether Lipids in Thermoacidophile Archaebacteria of the Caldariella Group, Phytochemistry, 19, 249–254.

    Article  Google Scholar 

  26. Rattray, J.B.M. (1988) Yeasts, in Microbial Lipids, (Ratledge, C., and Wilkinson, S.G., eds.), Vol. 1, pp. 555–697, Academic Press, New York.

    Google Scholar 

  27. Reysenbach, A.L., and Deming, J.W. (1991) Effects of Hydrostatic Pressure on Growth of Hyperthermophilic Archaebacteria from Juan de Fuca Ridge, Appl. Environ. Microbiol. 57, 1271–1274.

    PubMed  Google Scholar 

  28. Erauso, G., Reysenbach, A.L., Godfroy, A., Meunier, J.R., Cump, B., Portensky, F., Baross, J.A., Marteinsson, V., Barbier, G., Pace, N.R., and Prieur, D. (1993) Pyrococcus abyssi sp. nov., a New Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent, Arch. Microbiol. 160, 338–349.

    Article  CAS  Google Scholar 

  29. Langworthy, T.A., Smith P.F., and Mayberry, W.R. (1972) Lipids of Thermoplasma acidophilum, J. Bacteriol. 112, 1193–1200.

    PubMed  CAS  Google Scholar 

  30. Langworthy, T.A., Mayberry, W.R., and Smith, P.F. (1974) Long-Chain Glycerol Diether and Polyol Dialkyl Glycerol Triether Lipids of Sulfolobus acidocaldarius, J. Bacteriol. 119, 106–116.

    PubMed  CAS  Google Scholar 

  31. Comita, P.B., Gagosian, R.B., Pang, H., and Costello, C.E. (1984) Structural Elucidation of a Unique Macrocyclic Membrane Lipid from a New Extremely Thermophilic Deep-Sea Hydrothermal Vent Archaebacterium, Methanococcus jannaschii, J. Biol. Chem. 259, 15234–15241.

    PubMed  CAS  Google Scholar 

  32. Holzer, G.U., Kelly, P.J., and Jones, W.J. (1988) Analysis of Lipids from a Hydrothermal Vent Methanogen and Associated Vent Sediment by Supercritical Fluid Chromatography, J. Microbiol. Methods 8, 161–173.

    Article  CAS  Google Scholar 

  33. Tornabene, T.G., Wolfe, R.S., Balch, W.E., Holzer, G., Fox, G.E., and Oro, J. (1978) Phytanyl-Glycerol Ethers and Squalenes in the Archaeabacterium Methanobacterium thermoautotrophicum, J. Mol. Evol. 11, 259–266.

    Article  PubMed  CAS  Google Scholar 

  34. Holzer, G., Oro, J., and Tornabene, T.G. (1979) Gas Chromatography-Mass Spectrometry Analysis of Neutral Lipids from Methanogenic and Thermoacidophilic Bacteria, J. Chromatogr. 186, 795–809.

    Article  CAS  Google Scholar 

  35. Risatti, J.B., Rowland, S.J., Yon, D.A., and Maxwell, J.R. (1984) Stereochemical Studies of Acyclic Isoprenoid Lipids of Methanogenic Bacteria and Possible Contributions to Sediments, Org. Geochem 6, 93–104.

    Article  CAS  Google Scholar 

  36. De Rosa, M., Gambacorta, A., Nicolaus, B., and Bu' Lock, J.D. (1980) Complex Lipids of Caldariella acidophila, a Thermoacidophile Archaebacterium, Phytochemistry 19, 821–825.

    Article  Google Scholar 

  37. Lanzotti, V., De Rosa, M., Trincone, A., Basso, A.L., Gambacorta, A., and Zillig, W. (1987) Complex Lipids from Desulfurococcus mobilis, a Sulfur-Reducing Archaebacterium, Biochim. Biophys. Acta 922, 95–102.

    CAS  Google Scholar 

  38. Wakeham, S.G., Freeman, K.H., Pease, T.K., and Hayes, J.M. (1993) A Photoautotrophic Source for Lycopane in Marine Water Columns, Geochim. Cosmochim. Acta 57, 159–165.

    Article  PubMed  CAS  Google Scholar 

  39. Brassel, S.C., Wardroper, A.M.K., Thomson, J.D., Maxwell, J.R., and Eglinton, G. (1981) Specific Acyclic Isoprenoids as Biological Markers of Methanogenic Bacteria in Marine Sediments, Nature 290, 693–696.

    Article  Google Scholar 

  40. Farrington, J.W., Davis, A.C., Sulanowski, J., McCaffrey, M.A., McCarthy, M., Clifford, C.H., Dickinson, P., and Volkman, J.K. (1987) Biogeochemistry of Lipids in Surface Sediments of the Peru Upwelling Area at 15°S, Org. Geochem. 13, 607–617.

    Article  Google Scholar 

  41. Wakeham, S.G. (1990) Algal and Bacterial Hydrocarbons in Particulate Matter and Interfacial Sediment of the Cariaco Trench, Geochim. Cosmochim. Acta 54, 1325–1336.

    Article  CAS  Google Scholar 

  42. McCaffrey, M.A., Farrington, J.W., and Repeta, D.J. (1991) The Organic Geochemistry of Peru Margin Surface Sediments. Paleoenvironmental Implications of Hydrocarbons and Alcohol Profiles, Geochim. Cosmochim. Acta 55, 483–498.

    Article  CAS  Google Scholar 

  43. Vella, A.J., and Holzer, G. (1992) Distribution of Isoprenoid Hydrocarbons and Alkylbenzenes in Immature Sediments: Evidence for Direct Inheritance from Bacterial/Algal Sources, Org. Geochem. 18, 203–210.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Lattuati.

About this article

Cite this article

Lattuati, A., Guezennec, J., Metzger, P. et al. Lipids of Thermococcus hydrothermalis, an archaea isolated from a deep-sea hydrothermal vent. Lipids 33, 319–326 (1998). https://doi.org/10.1007/s11745-998-0211-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-998-0211-0

Keywords

Navigation