Skip to main content
Log in

Altered acyl chain length specificity of Rhizopus delemar lipase through mutagenesis and molecular modeling

  • Article
  • Published:
Lipids

Abstract

The acyl binding site of Rhizopus delemar prolipase and mature lipase was altered through site-directed mutagenesis to improve lipase specificity for short-or medium-chain length fatty acids. Computer-generated structural models of R. delemar lipase were used in mutant protein design and in the interpretation of the catalytic properties of the resulting recombinant enzymes. Molecular dynamics simulations of the double mutant, val209trp+phe112trp, predicted that the introduction of trp112 and trp209 in the acyl binding groove would sterically hinder the docking of fatty acids longer than butyric acid. Assayed against a mixture of triacylglycerol substrates, the val209trp+phe112trp mature lipase mutant showed an 80-fold increase in the hydrolysis of tributyrin relative to the hydrolysis of tricaprylin while no triolein hydrolysis was detected. By comparison, the val94Trp mutant, predicted to pose steric or geometric constraints for docking fatty acids longer than caprylic acid in the acyl binding groove, resulted in a modest 1.4-fold increase in tricaprylin hydrolysis relative to the hydrolysis of tributyrin. Molecular models of the double mutant phe95asp+phe214arg indicated the creation of a salt bridge between asp95 and arg214 across the distal end of the acyl binding groove. When challenged with a mixture of triacylglycerols, the phe95asp+phe214arg substitutions resulted in an enzyme with 3-fold enhanced relative activity for tricaprylin compared to triolein, suggesting that structural determinants for medium-chain length specificity may reside in the distal end of the acyl binding groove. Attempts to introduce a salt bridge within 8 Å of the active site by the double mutation leu146lys+ser115asp destroyed catalytic activity entirely. Similarly, the substitution of polar Gln at the rim of the acyl binding groove for phe 112 largely eliminated catalytic activity of the lipase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cDNA:

complementary DNA

IPTG:

isopropyl-b-d-thiogalactoside

Phe:

phenylalanine

Rd :

Rhizopus delemar

TB:

tributyrin

TC:

tricaprylin

TL:

trilaurin

TO:

triolein

Tris:

ris(hydroxymethyl)aminomethane

val:

valine

References

  1. Sarda, L., and Desnuelle, P. (1958) Action of Pancreatic Lipase on Esters in Emulsion, Biochim. Biophys. Acta 30, 513–521.

    Article  PubMed  CAS  Google Scholar 

  2. Derewenda, Z.S., and Sharp, A.M. (1993) News from the Interface: The Molecular Structures of Triacylglyceride Lipases, TIBS 18, 20–25.

    PubMed  CAS  Google Scholar 

  3. Derewenda, Z.S. (1995) A Twist in the Tale of Lipolytic Enzymes, Structural Biology 2, 347–349.

    Article  PubMed  CAS  Google Scholar 

  4. Kazlauskas, R.J. (1994) Elucidating Structure-Mechanism Relationships in Lipases: Prospects for Predicting and Engineering Catalytic Properties, TIBTECH 12, 464–472.

    CAS  Google Scholar 

  5. Cygler, M., Grochulski, P., and Schrag, J.D. (1995) Structural Determinants Defining Common Stereoselectivity of Lipases Toward Secondary Alcohols, Can. J. Microbiol. 41, 289–296.

    Article  PubMed  CAS  Google Scholar 

  6. Stadler, P., Kovac, A., and Paltauf, F. (1995) Understanding Lipase Action and Selectivity, Croatica Chemica Acta 68, 649–674.

    CAS  Google Scholar 

  7. Quinlan, P., and Moore, S. (1993) Modification of Triglycerides by Lipases: Process Technology and its Application to the Production of Nutritionally Improved Fats, INFORM 4, 580–585.

    Google Scholar 

  8. Vulfson, E.N. (1994) Industrial Applications of Lipases, in Lipases, Their Structure, Biochemistry, and Application (Woolley P., and Petersen, S.B., eds.) pp. 271–288, Cambridge University Press, Cambridge.

    Google Scholar 

  9. Haas, M.J., Cichowicz, D.J., and Bailey, D.G. (1992) Purification and Characterization of an Extracellular Lipase from the Fungus Rhizopus delemar, Lipids 27, 571–576.

    CAS  Google Scholar 

  10. Haas, M.J., Allen, J., and Berka, T.R. (1991) Cloning, Expression and Characterization of a cDNA Encoding a Lipase from Rhizopus delemar, Gene 109, 107–113.

    Article  PubMed  CAS  Google Scholar 

  11. Joerger, R.D., and Haas, M.J. (1993) Overexpression of a Rhizopus delemar Lipase Gene in Escherichia coli, Lipids 28, 81–87.

    PubMed  CAS  Google Scholar 

  12. Derewenda, U., Swenson, L., Wei, Y., Green, R., Kobos, P.M., Joerger, R., Haas, M.J., and Derewenda, Z.S. (1994) Conformational Lability of Lipases Observed in the Absence of an Oil-Water Interface: Crystallographic Studies of Enzymes from the Fungi Humicola lanuginosa and Rhizopus delemar, J. Lipid Res. 35, 524–534.

    PubMed  CAS  Google Scholar 

  13. Rubin, B. (1994) Crease Pit Chemistry Exposed, Structural Biology, 1, 568–572.

    Article  PubMed  CAS  Google Scholar 

  14. Joerger, R.D., and Haas, M.J. (1994) Alteration of Chain Length Selectivity of a Rhizopus delemar Lipase through Site-Directed Mutagenesis, Lipids 29, 377–384.

    PubMed  CAS  Google Scholar 

  15. Brzozowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Bjorkling, F., Huge-Jensen, B., Patkar, S.A., and Thim, L. (1991) A Model for Interfacial Activation in Lipases from the Structure of a Fungal Lipase-Inhibitor Complex, Nature 351, 491–494.

    Article  PubMed  CAS  Google Scholar 

  16. Derewenda, Z.S., Derewenda, U., and Dodson, G.G. (1992) The Crystal and Molecular Structure of the Rhizomucor miehei Triacylglyceride Lipase at 1.9 Å Resolution, J. Mol. Biol. 227, 818–839.

    Article  PubMed  CAS  Google Scholar 

  17. Klein, R.R., and Salvucci, M.E. (1992) Photoaffinity Labeling of Mature and Precursor Forms of the Small Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase After Expression in Escherichia coli, Plant Physiol. 98, 546–553.

    Article  PubMed  CAS  Google Scholar 

  18. Sturdier, F.W., Rosenberg, A.H., Dunn, J.J., and Dubendorff, J.W. (1991) Use of T7 RNA Polymerase to Direct the Expression of Cloned Genes. Novagen (Technical Bulletin), Madison WI.

  19. Kouker, G., and Jaeger, K.E. (1987) Specific and Sensitive Plate Assay for Bacterial Lipases, App. Environ. Microbiol. 53, 211–213.

    CAS  Google Scholar 

  20. Haas, M.J., Esposito, D., and Cichowicz, D.J. (1995) A Software Package to Streamline the Titrimetric Determination of Lipase Activity, J. Am. Oil Chem. Soc. 72, 1405–1406.

    CAS  Google Scholar 

  21. Uppenberg, J., Öhrner, N., Norin, M., Hult, K., Kleywegt, G.J., Patkar, S., Waagen, V., Anthonsen, T., and Jones, T.A., (1995) Crystallographic and Molecular-Modeling Studies of Lipase B from Candida antarctica Reveal a Stereospecificity Pocket for Secondary Alcohols, Biochemistry 34, 16838–16851.

    Article  PubMed  CAS  Google Scholar 

  22. Morrissey, J.H. (1981) Silver Stain for Proteins in Polyacrylamide Gels: A Modified Procedure with Enhanced Uniform Sensitivity, Anal. Biochem. 117, 307–310

    Article  PubMed  CAS  Google Scholar 

  23. Holmquist, M., Clausen, I.G., Patkar, S., Svendsen, A., and Hult, K. (1995) Probing a Functional Role of Glu87 and Trp89 in the Lid of Humicola lanuginosa Lipase Through Transesterification Reactions in Organic Solvent, J. Protein Chem. 14, 217–224.

    Article  PubMed  CAS  Google Scholar 

  24. Schmid, R.D., Menge, U., Schomburg, D., and Spener, F. (1995) Towards Novel Biocatalysts via Protein Design: The Case of Lipases, FEMS Microbiol. Rev., 16, 253–257.

    Article  CAS  Google Scholar 

  25. Delagrave, S., Goldman, E.R., and Youvan, D.C. (1993) Recursive Ensemble Mutagenesis, Protein Eng. 6, 327–331.

    PubMed  CAS  Google Scholar 

  26. Chen, K., and Arnold, F.H. (1993) Tuning the Activity of an Enzyme for Unusual Environments: Sequential Random Mutagenesis of Subtilisin E for Catalysis in Dimethylformamide, Proc. Natl. Acad. Sci. USA 90, 5618–5622.

    Article  PubMed  CAS  Google Scholar 

  27. Stemmer, W.P.C. (1995) Searching Sequence Space, Biotechnology, 13, 549–553.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Klein, R.R., King, G., Moreau, R.A. et al. Altered acyl chain length specificity of Rhizopus delemar lipase through mutagenesis and molecular modeling. Lipids 32, 123–130 (1997). https://doi.org/10.1007/s11745-997-0016-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-997-0016-1

Keywords

Navigation