Skip to main content
Log in

Oxidation of C18 Hydroxy-Polyunsaturated Fatty Acids to Epoxide or Ketone by Catalase-Related Hemoproteins Activated with Iodosylbenzene

  • Original Article
  • Published:
Lipids

Abstract

Small catalase-related hemoproteins with a facility to react with fatty acid hydroperoxides were examined for their potential mono-oxygenase activity when activated using iodosylbenzene. The proteins tested were a Fusarium graminearum 41 kD catalase hemoprotein (Fg-cat, gene FGSG_02217), a Pseudomonas fluorescens Pfl01 catalase (37.5 kD, accession number WP_011333788.1), and a Mycobacterium avium ssp. paratuberculosis 33 kD catalase (gene MAP-2744c). 13-Hydroxy-octadecenoic acids (which are normally unreactive) were selected as substrates because these enzymes react specifically with the corresponding 13S-hydroperoxides (Pakhomova et al. 18:2559–2568, 5; Teder et al. 1862:706–715, 14). In the presence of iodosylbenzene Fg-cat converted 13S-hydroxy-fatty acids to two products: the 15,16-double bond of 13S-hydroxy α-linolenic acid was oxidized stereospecifically to the 15S,16R-cis-epoxide or the 13-hydroxyl was oxidized to the 13-ketone. Products were identified by UV, HPLC, LC–MS, NMR and by comparison with authentic standards prepared for this study. The Pfl01-cat displayed similar activity. MAP-2744c oxidized 13S-hydroxy-linoleic acid to the 13-ketone, and epoxidized the double bonds to form the 9,10-epoxy-13-hydroxy, 11,12-epoxy-13-hydroxy, and 9,10-epoxy-13-keto derivatives; equivalent transformations occurred with 9S-hydroxy-linoleic acid as substrate. In parallel incubations in the presence of iodosylbenzene, human catalase displayed no activity towards 13S-hydroxy-linoleic acid, as expected from the highly restricted access to its active site. The results indicated that with suitable transformation to Compound I, monooxygenase activity can be demonstrated by these catalase-related hemoproteins with tyrosine as the proximal heme ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Scheme 3
Scheme 4

Similar content being viewed by others

Abbreviations

PhIO:

Iodosylbenzene

cAOS:

Catalase-related allene oxide synthase

COSY:

Correlation spectroscopy

Fg-cat:

Fusarium graminearum catalase of the gene FGSG_02217

H(P)ODE:

Hydro(pero)xyoctadecadienoic acid

H(P)OTE:

Hydro(pero)xyoctadecatrienoic acid

HODE:

Hydroxyoctadecadienoic acid

LOX:

Lipoxygenase

MAP-2744c:

Mycobacterium avium ssp. paratuberculosis catalase of gene MAP-2744c

mCPBA:

Meta-chloroperoxybenzoic acid

Pfl01-cat:

Pseudomonas fluorescens Pf01 catalase from the gene, accession number WP_011333788.1

RP-HPLC:

Reversed phase high pressure liquid chromatography

SP-HPLC:

Straight phase high pressure liquid chromatography

References

  1. Mashhadi Z, Newcomer ME, Brash AR (2016) The Thr–His connection on the distal heme of catalase-related hemoproteins: a hallmark of reaction with fatty acid hydroperoxides. ChemBioChem 17:2000–2006

    Article  CAS  PubMed  Google Scholar 

  2. Fita I, Rossman MG (1985) The active center of catalase. J Mol Biol 185:21–37

    Article  CAS  PubMed  Google Scholar 

  3. Putnam CD, Arvai AS, Bourne Y, Tainer JA (2000) Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Mol Biol 296:295–309

    Article  CAS  PubMed  Google Scholar 

  4. Oldham ML, Brash AR, Newcomer ME (2005) The structure of coral allene oxide synthase reveals a catalase adapted for metabolism of a fatty acid hydroperoxide. Proc Natl Acad Sci USA 102:297–302

    Article  CAS  PubMed  Google Scholar 

  5. Pakhomova S, Gao B, Boeglin WE, Brash AR, Newcomer ME (2009) The structure and peroxidase activity of a 33-kDa catalase-related protein from Mycobacterium avium ssp. paratuberculosis. Protein Sci 18:2559–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ortiz de Montellano PR, De Voss JJ (2002) Oxidizing species in the mechanism of cytochrome P450. Nat Prod Rep 19:477–493

    Article  PubMed  Google Scholar 

  7. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105:2253–2277

    Article  CAS  PubMed  Google Scholar 

  8. Ortiz de Montellano P (1992) Catalytic sites of hemoprotein peroxidases. Ann Rev Pharmacol Toxicol 32:89–107

    Article  CAS  Google Scholar 

  9. Boeglin WE, Brash AR (2012) Cytochrome P450-type hydroxylation and epoxidation in a tyrosine-liganded hemoprotein, catalase-related allene oxide synthase. J Biol Chem 287:24139–24147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lichtenberger F, Nastainczyk W, Ullrich V (1976) Cytochrome P450 as an oxene transferase. Biochem Biophys Res Commun 70:939–946

    Article  CAS  PubMed  Google Scholar 

  11. Gelb MH, Toscano WA Jr, Sligar SG (1982) Chemical mechanisms for cytochrome P-450 oxidation: spectral and catalytic properties of a manganese-substituted protein. Proc Natl Acad Sci USA 79:5758–5762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Macdonald TL, Burka LT, Wright ST, Guengerich FP (1982) Mechanisms of hydroxylation by cytochrome P-450: exchange of iron-oxygen intermediates with water. Biochem Biophys Res Commun 104:620–625

    Article  CAS  PubMed  Google Scholar 

  13. Ortiz de Montellano PR (2010) Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem Rev 110:932–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Teder T, Boeglin WE, Schneider C, Brash AR (2017) A fungal catalase reacts selectively with the 13S fatty acid hydroperoxide products of the adjacent lipoxygenase gene and exhibits 13S-hydroperoxide-dependent peroxidase activity. Biochim Biophys Acta 1862:706–715

    Article  CAS  PubMed  Google Scholar 

  15. Brash AR, Song W-C (1996) Detection, assay, and isolation of allene oxide synthase. Methods Enzymol 272:250–259

    Article  CAS  PubMed  Google Scholar 

  16. Thomas CP, Boeglin WE, Garcia-Diaz Y, O’Donnell VB, Brash AR (2013) Steric analysis of epoxyalcohol and trihydroxy derivatives of 9-hydroperoxy-linoleic acid from hematin and enzymatic synthesis. Chem Phys Lipids 167–168:21–32

    Article  PubMed  Google Scholar 

  17. Gao B, Boeglin WE, Brash AR (2008) Role of the conserved distal heme asparagine of coral allene oxide synthase (Asn137) and human catalase (Asn148): mutations affect the rate but not the essential chemistry of the enzymatic transformations. Arch Biochem Biophys 477:285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cui PH, Duke RK, Duke CC (2008) Monoepoxy octadecadienoates and monoepoxy octadecatrienoates 1: NMR spectral characterization. Chem Phys Lipids 152:122–130

    Article  CAS  PubMed  Google Scholar 

  19. Falck JR, Manna S, Jacobson HR, Estabrook RW, Chacos N, Capdevila J (1984) Absolute configuration of epoxyeicosatrienoic acids (EETs) formed during catalytic oxygenation of arachidonic acid by purified rat liver microsomal cytochrome P-450. J Am Chem Soc 106:3334–3336

    Article  CAS  Google Scholar 

  20. Gao B, Boeglin WE, Zheng Y, Schneider C, Brash AR (2009) Evidence for an ionic intermediate in the transformation of fatty acid hydroperoxide by a catalase-related allene oxide synthase from the cyanobacterium Acaryochloris marina. J Biol Chem 284:22087–22098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Teder T, Boeglin WE, Brash AR (2014) Lipoxygenase-catalyzed transformation of epoxy fatty acids to hydroxy-endoperoxides: a potential P450 and lipoxygenase interaction. J Lipid Res 55:2587–2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds. Wiley, New York

    Google Scholar 

  23. Schneider C, Schreier P, Humpf H-U (1997) Exciton-coupled circular dichroism (ECCD) in acyclic hydroxylated dienes: a sensitive method for the direct stereochemical assignment of lipoxygenase products. Chirality 9:563–567

    Article  CAS  Google Scholar 

  24. Gonnella NC, Nakanishi K, Martin VS, Sharpless BK (1982) General method for determining absolute configurations of acyclic allylic alcohols. J Am Chem Soc 104:3775–3776

    Article  CAS  Google Scholar 

  25. Humpf H-U, Berova N, Nakanishi K, Jarstfer MB, Poulter CD (1995) Allylic and homoallylic exciton coupled CD: a sensitive method for determining the absolute stereochemistry of natural products. J Org Chem 60:3539–3542

    Article  CAS  Google Scholar 

  26. Hamberg M (1989) Fatty acid hydroperoxide isomerase in Saprolegnia parasitica: structural studies of epoxy alcohols formed from isomeric hydroperoxyoctadecadienoates. Lipids 24:249–255

    Article  CAS  Google Scholar 

  27. Mercier J, Agoh B (1974) Comportement d’hydroperoxydes allyliques a longue chaine en presence de complexes de certains metaux de transition. II. Structure des époxy-alcools formés à partir d’hydroperoxydes d’octadécène-9 oates de méthyle cis et trans en présence d’acétylacétonate de vanadyle. Chem Phys Lipids 12:239–248

    Article  CAS  Google Scholar 

  28. Hamberg M, Herman RP, Jacobsson U (1986) Stereochemistry of two epoxy alcohols from Saprolegnia parasitica. Biochim Biophys Acta 879:410–418

    Article  CAS  Google Scholar 

  29. Guengerich FP (2003) Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidation and related reactions. Arch Biochem Biophys 409:59–71

    Article  PubMed  Google Scholar 

  30. Hofrichter M, Ullrich R (2014) Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol 19:116–125

    Article  CAS  PubMed  Google Scholar 

  31. Blée E, Flenet M, Boachon B, Fauconnier ML (2012) A non-canonical caleosin from Arabidopsis efficiently epoxidized physiological unsaturated fatty acids with complete stereoselectivity. FEBS J 279:3981–3995

    Article  PubMed  Google Scholar 

  32. Rao SI, Wilks A, Hamberg M, Ortiz de Montellano PR (1994) The lipoxygenase activity of myoglobin. Oxidation of linoleic acid by the ferryl oxygen rather than protein radical. J Biol Chem 269:7210–7216

    CAS  PubMed  Google Scholar 

  33. Hamberg M (1997) Myoglobin-catalyzed bis-allylic hydroxylation and epoxidation of linoleic acid. Arch Biochem Biophys 344:194–199

    Article  CAS  PubMed  Google Scholar 

  34. Bellucci G, Chiappe C, Pucci L, Gervasi PG (1996) The mechanism of oxidation of allylic alcohols to alpha, beta-unsaturated ketones by cytochrome P450. Chem Res Toxicol 9:871–874

    Article  CAS  PubMed  Google Scholar 

  35. Matsunaga T, Tanaka H, Higuchi S, Shibayama K, Kishi N, Watanabe K, Yamamoto I (2001) Oxidation mechanism of 7-hydroxy-delta 8-tetrahydrocannabinol and 8-hydroxy-delta 9-tetrahydrocannabinol to the corresponding ketones by CYP3A11. Drug Metab Dispos 29:1485–1491

    CAS  PubMed  Google Scholar 

  36. Wang Y, Yang C, Wang H, Han K, Shaik S (2007) A new mechanism for ethanol oxidation mediated by cytochrome P450 2E1: bulk polarity of the active site makes a difference. ChemBioChem 8:277–281

    Article  CAS  PubMed  Google Scholar 

  37. Rettie AE, Rettenmeier AW, Howald WN, Baillie TA (1987) Cytochrome P-450-catalyzed formation of D4-VPA, a toxic metabolite of valproic acid. Science 235:890–893

    Article  CAS  PubMed  Google Scholar 

  38. Rettie AE, Sheffels PR, Korzekwa KR, Gonzalez FJ, Philpot RM, Baillie TA (1995) CYP4 isozyme specificity and the relationship between omega-hydroxylation and terminal desaturation of valproic acid. Biochemistry 34:7889–7895

    Article  CAS  PubMed  Google Scholar 

  39. Korzekwa KR, Trager WF, Nagata K, Parkinson A, Gillette JR (1990) Isotope effect studies on the mechanism of the cytochrome P-450IIA1-catalyzed formation of delta 6-testosterone from testosterone. Drug Metab Dispos 18:974–979

    CAS  PubMed  Google Scholar 

  40. Brash AR (2009) Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes. Phytochemistry 70:1522–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health Grants GM-074888 and GM-15431 (to A. R. B.) and by the Institutional Research Funding IUT19-9 of the Estonian Ministry of Education and Research and the Estonian Science Foundation Grant 9410 (to Professor Nigulas Samel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Brash.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4097 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teder, T., Boeglin, W.E. & Brash, A.R. Oxidation of C18 Hydroxy-Polyunsaturated Fatty Acids to Epoxide or Ketone by Catalase-Related Hemoproteins Activated with Iodosylbenzene. Lipids 52, 587–597 (2017). https://doi.org/10.1007/s11745-017-4271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4271-0

Keywords

Navigation