Skip to main content
Log in

Serum n-3 Tetracosapentaenoic Acid and Tetracosahexaenoic Acid Increase Following Higher Dietary α-Linolenic Acid but not Docosahexaenoic Acid

  • Rapid Communication
  • Published:
Lipids

Abstract

n-3 Tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA) are believed to be important intermediates to docosahexaenoic acid (DHA, 22:6n-3) synthesis. The purpose of this study is to report for the first time serum concentrations of TPAn-3 and THA and their response to changing dietary α-linolenic acid (18:3n-3, ALA) and DHA. The responses will then be used in an attempt to predict the location of these fatty acids in relation to DHA in the biosynthetic pathway. Male Long Evans rats (n = 6 per group) were fed either a low (0.1% of total fatty acids), medium (3%) or high (10%) ALA diet with no added DHA, or a low (0%), medium (0.2%) or high (2%) DHA diet with a background of 2% ALA for 8 weeks post-weaning. Serum n-3 and n-6 polyunsaturated fatty acid (PUFA) concentrations (nmol/mL ± SEM) were determined by gas chromatography–mass spectrometry. Serum THA increases from low (0.3 ± 0.1) to medium (5.8 ± 0.7) but not from medium to high (4.6 ± 0.9) dietary ALA, while serum TPAn-3 increases with increasing dietary ALA from 0.09 ± 0.04 to 0.70 ± 0.09 to 1.23 ± 0.14 nmol/mL. Following DHA feeding, neither TPAn-3 or THA change across all dietary DHA intake levels. Serum TPAn-3 demonstrates a similar response to dietary DHA. In conclusion, this is the first study to demonstrate that increases in dietary ALA but not DHA increase serum TPAn-3 and THA in rats, suggesting that both fatty acids are precursors to DHA in the biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ALA:

α-Linolenic acid, 18:3n-3

DHA:

Docosahexaenoic acid, 22:6n-3

DPAn-3:

n-3 Docosapentaenoic acid, 22:5n-3

EPA:

Eicosapentaenoic acid, 20:5n-3

PFB:

Pentafluorolbenzyl

TLE:

Total lipid extract

THA:

Tetracosahexaenoic acid, 24:6n-3

TPAn-3:

Omega-3 tetracosapentaenoic acid, 24:5n-3

References

  1. Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR (2011) Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr 93:950–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sanders TA (2000) Polyunsaturated fatty acids in the food chain in Europe. Am J Clin Nutr 71:176S–178S

    CAS  PubMed  Google Scholar 

  3. Bazinet RP, Laye S (2014) Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 15:771–785

    Article  CAS  PubMed  Google Scholar 

  4. Domenichiello AF, Kitson AP, Bazinet RP (2015) Is docosahexaenoic acid synthesis from alpha-linolenic acid sufficient to supply the adult brain? Prog Lipid Res 59:54–66

    Article  CAS  PubMed  Google Scholar 

  5. Voss A, Reinhart M, Sankarappa S, Sprecher H (1991) The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J Biol Chem 266:19995–20000

    CAS  PubMed  Google Scholar 

  6. Christensen E, Woldseth B, Hagve TA, Poll-The BT, Wanders RJ, Sprecher H, Stokke O, Christophersen BO (1993) Peroxisomal beta-oxidation of polyunsaturated long chain fatty acids in human fibroblasts. The polyunsaturated and the saturated long chain fatty acids are retroconverted by the same acyl-CoA oxidase. Scand J Clin Lab Invest Suppl 215:61–74

    Article  CAS  PubMed  Google Scholar 

  7. Moore SA, Hurt E, Yoder E, Sprecher H, Spector AA (1995) Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid. J Lipid Res 36:2433–2443

    CAS  PubMed  Google Scholar 

  8. Infante JP, Huszagh VA (1997) On the molecular etiology of decreased arachidonic (20:4n-6), docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids in Zellweger syndrome and other peroxisomal disorders. Mol Cell Biochem 168:101–115

    Article  CAS  PubMed  Google Scholar 

  9. Infante JP, Huszagh VA (1998) Analysis of the putative role of 24-carbon polyunsaturated fatty acids in the biosynthesis of docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids. FEBS Lett 431:1–6

    Article  CAS  PubMed  Google Scholar 

  10. Park HG, Lawrence P, Engel M, Kothapalli K, Brenna JT (2016) Metabolic fate of docosahexaenoic acid (DHA; 22:6n-3) in human cells: direct retroconversion of DHA to eicosapentaenoic acid (EPA; 20:5n-3) dominates over elongation to tetracosahexaenoic acid (THA; 24:6n-3). FEBS Lett 590(18):3188–3194

    Article  CAS  PubMed  Google Scholar 

  11. Park HG, Park WJ, Kothapalli KS, Brenna JT (2015) The fatty acid desaturase 2 (FADS2) gene product catalyzes Delta4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells. FASEB J 29:3911–3919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Domenichiello AF, Kitson AP, Metherel AH, Chen CT, Hopperton KE, Stavro PM, Bazinet RP (2016) Whole-body docosahexaenoic acid synthesis-secretion rates in rats are constant across a large range of dietary alpha-linolenic acid intakes. J Nutr. doi:10.3945/jn.116.232074

    PubMed  Google Scholar 

  13. DeMar JC Jr, Ma K, Bell JM, Rapoport SI (2004) Half-lives of docosahexaenoic acid in rat brain phospholipids are prolonged by 15 weeks of nutritional deprivation of n-3 polyunsaturated fatty acids. J Neurochem 91:1125–1137

    Article  CAS  PubMed  Google Scholar 

  14. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  15. Metherel AH, Domenichiello AF, Kitson AP, Hopperton KE, Bazinet RP (2016) Whole-body DHA synthesis-secretion kinetics from plasma eicosapentaenoic acid and alpha-linolenic acid in the free-living rat. Biochim Biophys Acta 1861:997–1004

    Article  CAS  PubMed  Google Scholar 

  16. Pawlosky RJ, Sprecher HW, Salem N Jr (1992) High sensitivity negative ion GC-MS method for detection of desaturated and chain-elongated products of deuterated linoleic and linolenic acids. J Lipid Res 33:1711–1717

    CAS  PubMed  Google Scholar 

  17. Pawlosky R, Barnes A, Salem N Jr (1994) Essential fatty acid metabolism in the feline: relationship between liver and brain production of long-chain polyunsaturated fatty acids. J Lipid Res 35:2032–2040

    CAS  PubMed  Google Scholar 

  18. Lin YH, Shah S, Salem N Jr (2011) Altered essential fatty acid metabolism and composition in rat liver, plasma, heart and brain after microalgal DHA addition to the diet. J Nutr Biochem 22:758–765

    Article  CAS  PubMed  Google Scholar 

  19. Zhao YY, Feng YL, Bai X, Tan XJ, Lin RC, Mei Q (2013) Ultra performance liquid chromatography-based metabonomic study of therapeutic effect of the surface layer of Poria cocos on adenine-induced chronic kidney disease provides new insight into anti-fibrosis mechanism. PLoS One 8:e59617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Guzman JM, Ku G, Fahey R, Youm YH, Kass I, Ingram DK, Dixit VD, Kheterpal I (2013) Chronic caloric restriction partially protects against age-related alteration in serum metabolome. Age (Dordr) 35:1091–1104

    Article  CAS  Google Scholar 

  21. Lin YH, Pawlosky RJ, Salem N Jr (2005) Simultaneous quantitative determination of deuterium- and carbon-13-labeled essential fatty acids in rat plasma. J Lipid Res 46:1974–1982

    Article  CAS  PubMed  Google Scholar 

  22. Miao H, Zhao YH, Vaziri ND, Tang DD, Chen H, Khazaeli M, Tarbiat-Boldaji M, Hatami L, Zhao YY (2016) Lipidomics biomarkers of diet-induced hyperlipidemia and its treatment with Poria cocos. J Agric Food Chem 64:969–979

    Article  CAS  PubMed  Google Scholar 

  23. Igarashi M, DeMar JC Jr, Ma K, Chang L, Bell JM, Rapoport SI (2007) Upregulated liver conversion of alpha-linolenic acid to docosahexaenoic acid in rats on a 15 week n-3 PUFA-deficient diet. J Lipid Res 48:152–164

    Article  CAS  PubMed  Google Scholar 

  24. Kim HW, Rao JS, Rapoport SI, Igarashi M (2011) Regulation of rat brain polyunsaturated fatty acid (PUFA) metabolism during graded dietary n-3 PUFA deprivation. Prostaglandins Leukot Essent Fat Acids 85:361–368

    Article  CAS  Google Scholar 

  25. Talahalli RR, Vallikannan B, Sambaiah K, Lokesh BR (2010) Lower efficacy in the utilization of dietary ALA as compared to preformed EPA + DHA on long chain n-3 PUFA levels in rats. Lipids 45:799–808

    Article  CAS  PubMed  Google Scholar 

  26. Bjerve KS, Fischer S, Alme K (1987) Alpha-linolenic acid deficiency in man: effect of ethyl linolenate on plasma and erythrocyte fatty acid composition and biosynthesis of prostanoids. Am J Clin Nutr 46:570–576

    CAS  PubMed  Google Scholar 

  27. Holman RT, Johnson SB, Hatch TF (1982) A case of human linolenic acid deficiency involving neurological abnormalities. Am J Clin Nutr 35:617–623

    CAS  PubMed  Google Scholar 

  28. Arterburn LM, Hall EB, Oken H (2006) Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr 83:1467S–1476S

    CAS  PubMed  Google Scholar 

  29. Plourde M, Chouinard-Watkins R, Rioux-Perreault C, Fortier M, Dang MT, Allard MJ, Tremblay-Mercier J, Zhang Y, Lawrence P, Vohl MC, Perron P, Lorrain D, Brenna JT, Cunnane SC (2014) Kinetics of 13C-DHA before and during fish-oil supplementation in healthy older individuals. Am J Clin Nutr 100:105–112

    Article  CAS  PubMed  Google Scholar 

  30. Metherel AH, Buzikievich LM, Charkhzarin P, Patterson AC, Peel AC, Howorth AM, Kishi DM, Stark KD (2012) Omega-3 polyunsaturated fatty acid profiling using fingertip-prick whole blood does not require overnight fasting before blood collection. Nutr Res 32:547–556

    Article  CAS  PubMed  Google Scholar 

  31. Calviello G, Palozza P, Franceschelli P, Bartoli GM (1997) Low-dose eicosapentaenoic or docosahexaenoic acid administration modifies fatty acid composition and does not affect susceptibility to oxidative stress in rat erythrocytes and tissues. Lipids 32:1075–1083

    Article  CAS  PubMed  Google Scholar 

  32. Kassem AA, Abu Bakar MZ, Yong Meng G, Mustapha NM (2012) Dietary (n-6: n-3) fatty acids alter plasma and tissue fatty acid composition in pregnant Sprague Dawley rats. Sci World J 2012:851437

    Article  Google Scholar 

  33. Welch AA, Shakya-Shrestha S, Lentjes MA, Wareham NJ, Khaw KT (2010) Dietary intake and status of n-3 polyunsaturated fatty acids in a population of fish-eating and non-fish-eating meat-eaters, vegetarians, and vegans and the product-precursor ratio [corrected] of alpha-linolenic acid to long-chain n-3 polyunsaturated fatty acids: results from the EPIC-Norfolk cohort. Am J Clin Nutr 92:1040–1051

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by a grant to Richard P. Bazinet through the Natural Sciences and Engineering Research Council of Canada (482597). Richard P. Bazinet holds a Canada Research Chair in Brain Lipid Metabolism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam H. Metherel.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metherel, A.H., Domenichiello, A.F., Kitson, A.P. et al. Serum n-3 Tetracosapentaenoic Acid and Tetracosahexaenoic Acid Increase Following Higher Dietary α-Linolenic Acid but not Docosahexaenoic Acid. Lipids 52, 167–172 (2017). https://doi.org/10.1007/s11745-016-4223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4223-0

Keywords

Navigation