Skip to main content
Log in

Caloric Restriction Normalizes Obesity-Induced Alterations on Regulators of Skeletal Muscle Growth Signaling

  • Original Article
  • Published:
Lipids

Abstract

The objective of this study was to establish the impact of caloric restriction on high fat diet-induced alterations on regulators of skeletal muscle growth. We hypothesized that caloric restriction would reverse the negative effects of high fat diet-induced obesity on REDD1 and mTOR-related signaling. Following an initial 8 week period of HF diet-induced obesity, caloric restriction (CR ~30 %) was employed while mice continued to consume either a low (LF) or high fat (HF) diet for 8 weeks. Western analysis of skeletal muscle showed that CR reduced (p < 0.05) the obesity-related effects on the lipogenic protein, SREBP1. Likewise, CR reduced (p < 0.05) the obesity-related effects on the hyperactivation of mTORC1 and ERK1/2 signaling to levels comparable to the LF mice. CR also reduced (p < 0.05) obesity-induced expression of negative regulators of growth, REDD1 and cleaved caspase 3. These findings have implications for on the reversibility of dysregulated growth signaling in obese skeletal muscle, using short-term caloric restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CR:

Caloric restriction

ERK:

Extracellular signal-regulated kinase

HF:

High fat

LF:

Low fat

MEK:

MAPK/ERK kinase

mTOR:

Mammalian target of rapamycin

mTORC1:

mTOR complex 1

REDD1:

Regulated in development and DNA damage responses 1

rpS6:

Ribosomal protein S6, S6K1 p70 ribosomal protein S6 kinase-1

SREBP1c:

Sterol regulatory element-binding protein 1c

References

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM (2012 ) Prevalence of obesity in the United States, 2009–2010. NCHS data brief, pp 1–8

  2. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200–205

    Article  CAS  PubMed  Google Scholar 

  3. Williamson DL, Dungan CM, Mahmoud AM, Mey JT, Blackburn BK, Haus JM (2015) Aberrant REDD1-mTORC1 responses to insulin in skeletal muscle from type 2 diabetics. Am J Physiol Regul Integr Comp Physiol 309:R855–R863

    Article  CAS  PubMed  Google Scholar 

  4. Drake JC, Alway SE, Hollander JM, Williamson DL (2010) AICAR treatment for 14 days normalizes obesity-induced dysregulation of TORC1 signaling and translational capacity in fasted skeletal muscle. Am J Physiol Regul Integr Comp Physiol 299:R1546–R1554

    Article  CAS  PubMed  Google Scholar 

  5. Pieri BL, Souza DR, Luciano TF, Marques SO, Pauli JR, Silva AS, Ropelle ER, Pinho RA, Lira FS, De Souza CT (2014) Effects of physical exercise on the P38MAPK/REDD1/14-3-3 pathways in the myocardium of diet-induced obesity rats. Horm Metab Res 46:621–627

    Article  CAS  PubMed  Google Scholar 

  6. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ricoult SJH, Manning BD (2012) The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep 14:242–251

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kim DH, Sabatini DM (2004) Raptor and mTOR: subunits of a nutrient-sensitive complex. Curr Top Microbiol Immunol 279:259–270

    CAS  PubMed  Google Scholar 

  9. Holz MK, Ballif BA, Gygi SP, Blenis J (2005) mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123:569–580

    Article  CAS  PubMed  Google Scholar 

  10. Inoki K, Li Y, Zhu T, Wu J, Guan K-L (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657

    Article  CAS  PubMed  Google Scholar 

  11. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121:179–193

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Kubica N, Ellisen LW, Jefferson LS, Kimball SR (2006) Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem 281:39128–39134

    Article  CAS  PubMed  Google Scholar 

  13. Lin L, Qian Y, Shi X, Chen Y (2005) Induction of a cell stress response gene RTP801 by DNA damaging agent methyl methanesulfonate through CCAAT/enhancer binding protein. Biochemistry 44:3909–3914

    Article  CAS  PubMed  Google Scholar 

  14. Wang Z, Malone MH, Thomenius MJ, Zhong F, Xu F, Distelhorst CW (2003) Dexamethasone-induced gene 2 (dig2) is a novel pro-survival stress gene induced rapidly by diverse apoptotic signals. J Biol Chem 278:27053–27058

    Article  CAS  PubMed  Google Scholar 

  15. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18:2893–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shoshani T, Faerman A, Mett I, Zelin E, Tenne T, Gorodin S, Moshel Y, Elbaz S, Budanov A, Chajut A, Kalinski H, Kamer I, Rozen A, Mor O, Keshet E, Leshkowitz D, Einat P, Skaliter R, Feinstein E (2002) Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol 22:2283–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW (2008) Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22:239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dennis MD, Coleman CS, Berg A, Jefferson LS, Kimball SR (2014) REDD1 enhances protein phosphatase 2A-mediated dephosphorylation of Akt to repress mTORC1 signaling. Sci Signal 7:ra68

  19. Dungan CM, Wright DC, Williamson DL (2014) Lack of REDD1 reduces whole body glucose and insulin tolerance, and impairs skeletal muscle insulin signaling. Biochem Biophys Res Commun 453:778–783

    Article  CAS  PubMed  Google Scholar 

  20. Williamson DL, Li Z, Tuder RM, Feinstein E, Kimball SR, Dungan CM (2014) Altered nutrient response of mTORC1 as a result of changes in REDD1 expression: effect of obesity vs. REDD1 deficiency. J Appl Physiol 117:246–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gordon BS, Williamson DL, Lang CH, Jefferson LS, Kimball SR (2015) Nutrient-induced stimulation of protein synthesis in mouse skeletal muscle is limited by the mTORC1 repressor REDD1. J Nutr 145:708–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McGhee NK, Jefferson LS, Kimball SR (2009) Elevated corticosterone associated with food deprivation upregulates expression in rat skeletal muscle of the mTORC1 repressor, REDD1. J Nutr 139:828–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan CY, Hagen T (2013) mTORC1 dependent regulation of REDD1 protein stability. PLoS One 8:e63970

    Article  PubMed  PubMed Central  Google Scholar 

  24. Regazzetti C, Bost F, Le Marchand-Brustel Y, Tanti JF, Giorgetti-Peraldi S (2010) Insulin induces REDD1 expression through hypoxia-inducible factor 1 activation in adipocytes. J Biol Chem 285:5157–5164

    Article  CAS  PubMed  Google Scholar 

  25. Liu HW, Srinivasan M, Mahmood S, Smiraglia DJ, Patel MS (2013) Adult-onset obesity induced by early life overnutrition could be reversed by moderate caloric restriction. Am J Physiol Endocrinol Metab 305:E785–E794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weindruch R, Walford RL, Fligiel S, Guthrie D (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 116:641–654

    CAS  PubMed  Google Scholar 

  27. Dean DJ, Cartee GD (2000) Calorie restriction increases insulin-stimulated tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1 in rat skeletal muscle. Acta Physiol Scand 169:133–139

    Article  CAS  PubMed  Google Scholar 

  28. Dean DJ, Gazdag AC, Wetter TJ, Cartee GD (1998) Comparison of the effects of 20 days and 15 months of calorie restriction on male Fischer 344 rats. Aging (Milano) 10:303–307

    CAS  Google Scholar 

  29. Abedelmalek S, Chtourou H, Souissi N, Tabka Z (2015) Caloric restriction effect on proinflammatory cytokines, growth hormone, and steroid hormone concentrations during exercise in Judokas. Oxid Med Cell Longev 2015:890–898

    Article  Google Scholar 

  30. Tam CS, Frost EA, Xie W, Rood J, Ravussin E, Redman LM, Pennington CT (2014) No effect of caloric restriction on salivary cortisol levels in overweight men and women. Metabolism 63:194–198

    Article  CAS  PubMed  Google Scholar 

  31. Cui M, Yu H, Wang J, Gao J, Li J (2013) Chronic caloric restriction and exercise improve metabolic conditions of dietary-induced obese mice in autophagy correlated manner without involving AMPK. J Diabetes Res 2013:852–860

    Article  Google Scholar 

  32. Tauriainen E, Storvik M, Finckenberg P, Merasto S, Martonen E, Pilvi TK, Korpela R, Mervaala EM (2011) Skeletal muscle gene expression profile is modified by dietary protein source and calcium during energy restriction. J Nutr Nutr 4:49–62

    CAS  Google Scholar 

  33. Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP (2009) Clinical review: the pathogenetic role of cortisol in the metabolic syndrome—a hypothesis. J Clin Endocrinol Metab 94:2692–2701

    Article  CAS  PubMed  Google Scholar 

  34. Misra M, Bredella MA, Tsai P, Mendes N, Miller KK, Klibanski A (2008) Lower growth hormone and higher cortisol are associated with greater visceral adiposity, intramyocellular lipids, and insulin resistance in overweight girls. Am J Physiol Endocrinol Metab 295:E385–E392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yuen KC, Chong LE, Riddle MC (2013) Influence of glucocorticoids and growth hormone on insulin sensitivity in humans. Diabet Med J Br Diabet Assoc 30:651–663

    Article  CAS  Google Scholar 

  36. Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR (2000) Leucine stimulates translation initiation in skeletal muscle of post-absorptive rats via a rapamycin sensitive pathway. Nutrition 130:2413–2419

    CAS  Google Scholar 

  37. Kimball SR, Shantz LM, Horetsky RL, Jefferson LS (1999) Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal S6. J Biol Chem 274:11647–11652

    Article  CAS  PubMed  Google Scholar 

  38. Batch BC, Shah SH, Newgard CB, Turer CB, Haynes C, Bain JR, Muehlbauer M, Patel MJ, Stevens RD, Appel LJ, Newby LK, Svetkey LP (2013) Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism 62:961–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dennis MD, Baum JI, Kimball SR, Jefferson LS (2011) Mechanisms involved in the coordinate regulation of mTORC1 by insulin and amino acids. J Biol Chem 286:8287–8296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    Article  CAS  PubMed  Google Scholar 

  43. Xia X, Kar R, Gluhak-Heinrich J, Yao W, Lane NE, Bonewald LF, Biswas SK, Lo WK, Jiang JX (2010) Glucocorticoid-induced autophagy in osteocytes. J Bone Miner Res 25:2479–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Onodera J, Ohsumi Y (2005) Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem 280:31582–31586

    Article  CAS  PubMed  Google Scholar 

  45. Yang Z, Huang J, Geng J, Nair U, Klionsky DJ (2006) Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 17:5094–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kelleher AR, Kimball SR, Dennis MD, Schilder RJ, Jefferson LS (2013) The mTORC1 signaling repressors REDD1/2 are rapidly induced and activation of p70S6K1 by leucine is defective in skeletal muscle of an immobilized rat hind limb. Am J Physiol Endocrinol Metab 304:E229–E236

    Article  CAS  PubMed  Google Scholar 

  47. Murakami T, Hasegawa K, Yoshinaga M (2011) Rapid induction of REDD1 expression by endurance exercise in rat skeletal muscle. Biochem Biophys Res Commun 405:615–619

    Article  CAS  PubMed  Google Scholar 

  48. Lang CH, Frost RA, Vary TC (2008) Acute alcohol intoxication increases REDD1 in skeletal muscle. Alcohol Clin Exp Res 32:796–805

    Article  CAS  PubMed  Google Scholar 

  49. Qiao S, Dennis M, Song X, Vadysirisack DD, Salunke D, Nash Z, Yang Z, Liesa M, Yoshioka J, Matsuzawa S, Shirihai OS, Lee RT, Reed JC, Ellisen LW (2015) A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nat Commun 6:7014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chung JW, Jeon JH, Yoon SR, Choi I (2006) Vitamin D3 upregulated protein 1 (VDUP1) is a regulator for redox signaling and stress-mediated diseases. J Dermatol 33:662–669

    Article  CAS  PubMed  Google Scholar 

  51. Kimball SR, Do AN, Kutzler L, Cavener DR, Jefferson LS (2008) Rapid turnover of the mTOR complex 1 (mTORC1) repressor REDD1 and activation of mTORC1 signaling following inhibition of protein synthesis. J Biol Chem 283:3465–3475

    Article  CAS  PubMed  Google Scholar 

  52. Regazzetti C, Dumas K, Le Marchand-Brustel Y, Peraldi P, Tanti JF, Giorgetti-Peraldi S (2012) Regulated in development and DNA damage responses -1 (REDD1) protein contributes to insulin signaling pathway in adipocytes. PLoS One 7:e52154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zheng Y, Zhang W, Pendleton E, Leng S, Wu J, Chen R, Sun XJ (2009) Improved insulin sensitivity by calorie restriction is associated with reduction of ERK and p70S6K activities in the liver of obese Zucker rats. J Endocrinol 203:337–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu Z, Xu S (2006) ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 58:621–631

    Article  CAS  PubMed  Google Scholar 

  55. Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI (2013) Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One 8:e54059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meng ZX, Wang L, Xiao Y, Lin JD (2014) The Baf60c/Deptor pathway links skeletal muscle inflammation to glucose homeostasis in obesity. Diabetes 63:1533–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jager J, Corcelle V, Gremeaux T, Laurent K, Waget A, Pages G, Binetruy B, Le Marchand-Brustel Y, Burcelin R, Bost F, Tanti JF (2011) Deficiency in the extracellular signal-regulated kinase 1 (ERK1) protects leptin-deficient mice from insulin resistance without affecting obesity. Diabetologia 54:180–189

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mingxia Cui for excellent support throughout the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Williamson.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dungan, C.M., Li, J. & Williamson, D.L. Caloric Restriction Normalizes Obesity-Induced Alterations on Regulators of Skeletal Muscle Growth Signaling. Lipids 51, 905–912 (2016). https://doi.org/10.1007/s11745-016-4168-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4168-3

Keywords

Navigation