Skip to main content
Log in

Pinolenic Acid Downregulates Lipid Anabolic Pathway in HepG2 Cells

  • Original Article
  • Published:
Lipids

Abstract

Pine nut oil (PNO) was reported to reduce lipid accumulation in the liver. However, the specific effect of pinolenic acid (18:3, all-cis-Δ5,9,12), a unique component of PNO, on lipid metabolism has not been studied. We hypothesized that pinolenic acid downregulates the lipid anabolic pathway in HepG2 cells. HepG2 cells were incubated in serum-free medium supplemented with 50 μM bovine serum albumin (BSA), palmitic acid, oleic acid, γ-linolenic acid, pinolenic acid, eicosapentaenoic acid (EPA), or α-linolenic acid for 24 h. Lipid accumulation was determined by Oil Red O (ORO) staining. The mRNA levels of genes related to fatty acid biosynthesis (SREBP1c, FAS, SCD1, and ACC1), fatty acid oxidation (ACC2, PPARα, CPT1A, and ACADL), cholesterol synthesis (SREBP2 and HMGCR), and lipoprotein uptake (LDLr) and of genes that may be involved in the downregulation of the lipogenic pathway (ACSL3, ACSL4, and ACSL5) were determined by qPCR. LDLR protein levels were measured by Western blot analysis. The mRNA levels of SREBP1c, FAS, and SCD1 were significantly downregulated by pinolenic acid treatment compared to BSA control (53, 54, and 38 % lower, respectively). In addition, the mRNA levels of HMGCR, ACSL3, and LDLr were significantly lower (30, 30, and 43 % lower, respectively), and ACSL4 tended to be lower in the pinolenic acid group (20 % lower, P = 0.082) relative to the control group. In conclusion, pinolenic acid downregulated the lipid anabolic pathway in HepG2 cells by reducing expression of genes related to lipid synthesis, lipoprotein uptake, and the regulation of the lipogenic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACADL:

Acyl-CoA dehydrogenase long chain

ACC:

Acetyl-CoA carboxylase

ACSL:

Long chain acyl coenzyme A synthase

ARA:

Arachidonic acid

BSA:

Bovine serum albumin

CPT1A:

Carnitine palmitoyl transferase 1

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

FAS:

Fatty acid synthase

HMGCR:

3-Hydroxy-3-methyl-glutaryl-CoA reductase

LDL:

Low density lipoprotein

LDLr:

Low density lipoprotein receptor

OLA:

Oleic acid

PAM:

Palmitic acid

PNA:

Pinolenic acid

PNO:

Pine nut oil

PPARα:

Peroxisome proliferator-activated receptor alpha

PUFA:

Polyunsaturated fatty acid

SCD1:

Stearoyl-CoA desaturase 1

SREBP:

Sterol regulatory element-binding protein

References

  1. Wolff RL, Pédrono F, Pasquier E et al (2000) General characteristics of Pinus spp. seed fatty acid compositions, and importance of Δ5-olefinic acids in the taxonomy and phylogeny of the genus. Lipids 35:1–22

    Article  CAS  PubMed  Google Scholar 

  2. Wolff R (1998) A practical source of Delta 5-olefinic acids for identification purposes. J Am Oil Chem Soc 75:891–892

    CAS  Google Scholar 

  3. Wolff RL, Bayard CC (1995) Fatty acid composition of some pine seed oils. J Am Oil Chem Soc 72:1043–1046

    Article  CAS  Google Scholar 

  4. No DS, Kim I-H (2013) Pinolenic acid as a new source of phyto-polyunsaturated fatty acid. Lipid Technol 25:135–138

    Article  CAS  Google Scholar 

  5. Ferramosca A, Savy V, Einerhand A et al (2008) Pinus koraiensis seed oil (PinnoThinTM) supplementation reduces body weight gain and lipid concentration in liver and plasma of mice. J Anim Feed Sci 487:47

    Google Scholar 

  6. Asset G, Staels B, Wolff RL et al (1999) Effects of Pinus pinaster and Pinus koraiensis seed oil supplementation on lipoprotein metabolism in the rat. Lipids 34:39–44

    Article  CAS  PubMed  Google Scholar 

  7. Park S, Lim Y, Shin S et al (2013) Impact of Korean pine nut oil on weight gain and immune responses in high-fat diet-induced obese mice. Nutr Res Pract 7:352–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sugano M, Ikeda I, Wakamatsu K et al (1994) Influence of Korean pine (Pinus koraiensis)-seed oil containing cis-5, cis-9, cis-12-octadecatrienoic acid on polyunsaturated fatty acid metabolism, eicosanoid production and blood pressure of rats. Br J Nutr 72:775–783

    Article  CAS  PubMed  Google Scholar 

  9. Le NH, Shin S, Tu TH et al (2012) Diet enriched with Korean pine nut oil improves mitochondrial oxidative metabolism in skeletal muscle and brown adipose tissue in diet-induced obesity. J Agric Food Chem 60:11935–11941

    Article  CAS  PubMed  Google Scholar 

  10. Ferramosca A, Savy V, Conte L et al (2008) Dietary combination of conjugated linoleic acid (CLA) and pine nut oil prevents CLA-induced fatty liver in mice. J Agric Food Chem 56:8148–8158

    Article  CAS  PubMed  Google Scholar 

  11. Knebel B, Haas J, Hartwig S et al (2012) Liver-specific expression of transcriptionally active SREBP-1c is associated with fatty liver and increased visceral fat mass. PLoS One 7:e31812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shimano H (2001) Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 40:439–452

    Article  CAS  PubMed  Google Scholar 

  13. Kim JH, Lee HJ, Jeong SJ et al (2012) Essential oil of Pinus koraiensis leaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A:cholesterol acyltransferase. Phytother Res. 26:1314–1319

    Article  CAS  PubMed  Google Scholar 

  14. Dong B, Singh AB, Chin Fung KK et al (2014) CETP inhibitors downregulate hepatic LDL receptor and PCSK9 expression in vitro and in vivo through a SREBP2 dependent mechanism. Atherosclerosis 235:449–462

  15. Bu SY, Mashek DG (2010) Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J Lipid Res 51:3270–3280

    Article  PubMed  PubMed Central  Google Scholar 

  16. Poudyal H, Panchal SK, Ward LC et al (2013) Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. J Nutr Biochem 24:1041–1052

    Article  CAS  PubMed  Google Scholar 

  17. Levy JR, Clore JN, Stevens W (2004) Dietary n-3 polyunsaturated fatty acids decrease hepatic triglycerides in Fischer 344 rats. Hepatology 39:608–616

    Article  CAS  PubMed  Google Scholar 

  18. Tsuzuki T, Kawakami Y, Suzuki Y et al (2005) Intake of conjugated eicosapentaenoic acid suppresses lipid accumulation in liver and epididymal adipose tissue in rats. Lipids 40:1117–1123

    Article  CAS  PubMed  Google Scholar 

  19. Iio A, Ito M, Itoh T et al (2013) Molecular hydrogen attenuates fatty acid uptake and lipid accumulation through downregulating CD36 expression in HepG2 cells. Med Gas Res 3:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fujimoto Y, Onoduka J, Homma KJ et al (2006) Long-chain fatty acids induce lipid droplet formation in a cultured human hepatocyte in a manner dependent of Acyl-CoA synthetase. Biol Pharm Bull 29:2174–2180

    Article  CAS  PubMed  Google Scholar 

  21. Kuang Y-L, Eric Paulson K, Lichtenstein AH et al (2012) Regulation of the expression of key genes involved in HDL metabolism by unsaturated fatty acids. Br J Nutr 108:1351–1359

    Article  CAS  PubMed  Google Scholar 

  22. Teran-Garcia M, Adamson A, Yu G et al (2007) Polyunsaturated fatty acid suppression of fatty acid synthase (FASN): evidence for dietary modulation of NF-Y binding to the Fasn promoter by SREBP-1c. Biochem J 402:591–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mater MK, Thelen AP, Pan DA et al (1999) Sterol response element-binding protein 1c (SREBP1c) is involved in the polyunsaturated fatty acid suppression of hepatic S14 gene transcription. J Biol Chem 274:32725–32732

    Article  CAS  PubMed  Google Scholar 

  24. Xu J, Teran-Garcia M, Park JH et al (2001) Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. J Biol Chem 276:9800–9807

    Article  CAS  PubMed  Google Scholar 

  25. Nakatani T, Kim HJ, Kaburagi Y et al (2003) A low fish oil inhibits SREBP-1 proteolytic cascade, while a high-fish-oil feeding decreases SREBP-1 mRNA in mice liver: relationship to anti-obesity. J Lipid Res 44:369–379

    Article  CAS  PubMed  Google Scholar 

  26. Caputo M, Zirpoli H, Torino G et al (2011) Selective regulation of UGT1A1 and SREBP-1c mRNA expression by docosahexaenoic, eicosapentaenoic, and arachidonic acids. J Cell Physiol 226:187–193

    Article  CAS  PubMed  Google Scholar 

  27. Vallett SM, Sanchez HB, Rosenfeld JM et al (1996) A direct role for sterol regulatory element binding protein in activation of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene. J Biol Chem 271:12247–12253

    Article  CAS  PubMed  Google Scholar 

  28. Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Investig 118:829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haas ME, Attie AD, Biddinger SB (2013) The regulation of ApoB metabolism by insulin. Trends Endocrinol Metab 24:391–397

    Article  CAS  PubMed  Google Scholar 

  30. Costet P, Cariou B, Lambert G et al (2006) Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J Biol Chem 281:6211–6218

    Article  CAS  PubMed  Google Scholar 

  31. Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci 96:11041–11048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sandoval A, Fraisl P, Arias-Barrau E et al (2008) Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking. Arch Biochem Biophys 477:363–371

    Article  CAS  PubMed  Google Scholar 

  33. Bu SY, Mashek MT, Mashek DG (2009) Suppression of long chain acyl-CoA synthetase 3 decreases hepatic de novo fatty acid synthesis through decreased transcriptional activity. J Biol Chem 284:30474–30483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kassan A, Herms A, Fernández-Vidal A et al (2013) Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J Cell Biol 203:985–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Westerbacka J, Kolak M, Kiviluoto T et al (2007) Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes 56:2759–2765

    Article  CAS  PubMed  Google Scholar 

  36. Kan CFK, Singh AB, Stafforini DB et al (2014) Arachidonic acid down regulates acyl-CoA synthetase 4 expression by promoting its ubiquitination and proteasomal degradation. J Lipid Res 55:1657–1667

  37. Sampath H, Ntambi JM (2005) Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr 25:317–340

    Article  CAS  PubMed  Google Scholar 

  38. Moon YS, Latasa M-J, Griffin MJ et al (2002) Suppression of fatty acid synthase promoter by polyunsaturated fatty acids. J Lipid Res 43:691–698

    CAS  PubMed  Google Scholar 

  39. Howell G 3rd, Deng X, Yellaturu C et al (2009) N-3 polyunsaturated fatty acids suppress insulin-induced SREBP-1c transcription via reduced trans-activating capacity of LXRα. Biochim Biophys Acta 1791:1190–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jelenik T, Rossmeisl M, Kuda O et al (2010) AMP-activated protein kinase α2 subunit is required for the preservation of hepatic insulin sensitivity by n-3 polyunsaturated fatty acids. Diabetes 59:2737–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (Grant Number NRF-2010-0024878).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Nim Han.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, A.R., Han, S.N. Pinolenic Acid Downregulates Lipid Anabolic Pathway in HepG2 Cells. Lipids 51, 847–855 (2016). https://doi.org/10.1007/s11745-016-4149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4149-6

Keywords

Navigation