Skip to main content
Log in

Novel Very Long-Chain α-Methoxylated Δ5,9 Fatty Acids from the Sponge Asteropus niger Are Effective Inhibitors of Topoisomerases IB

  • Original Article
  • Published:
Lipids

Abstract

The novel fatty acids (2R,5Z,9Z)-2-methoxy-25-methyl-5,9-hexacosadienoic acid (1a) and (2R,5Z,9Z)-2-methoxy-24-methyl-5,9-hexacosadienoic acid (1b) were isolated in 80 % purity from the Caribbean sponge Asteropus niger by chloroform/methanol extraction followed by solvent partitioning and silica gel column chromatography. The compounds were characterized by utilizing a combination of gas chromatography-mass spectrometry, nuclear magnetic resonance, and circular dichroism. Acids 1a and 1b were not detected in the phospholipids (PtdCho and PtdIns) of the sponge, but rather as free FA and possibly in glycosylceramides. The mixtures of 1a and 1b displayed cytotoxicity towards THP-1 and HepG2 cells with EC50’s between 41 and 35 μg/mL. Apoptosis was not the preferred mode of cell death induced by 1a1b in the THP-1 cells. This implies other types of cytotoxicity mechanisms, such as membrane disruption and/or the inhibition (EC50 = 1.8 μg/mL) of the human topoisomerase IB enzyme (hTopIB), with a mechanism of inhibition different from the one displayed by camptothecin (CPT). In a separate experiment, the mixture of 1a and 1b also displayed cytotoxicity towards ex vivo mouse splenocytes infected with Leishmania infantum amastigotes (IC50 = 0.17 mg/mL) and free living promastigotes (IC50 = 0.34 mg/mL). It was also found that the FA were inhibitory of the Leishmania topoisomerase IB (LTopIB) with an EC50 = 5.1 μg/mL. Taken together, 1a and 1b represent a new class of FA with potential as TopIB inhibitors that preferentially inhibit hTopIB over LTopIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FA:

Fatty acids

CD:

Circular dichroism

CPT:

Camptothecin

ECL:

Equivalent chain length

EC50 :

Half maximal effective concentration

ED50 :

Median effective dose

GC–MS:

Gas chromatography-mass spectrometry

HepG2:

Human hepatocellular liver carcinoma cell line

hTopIB:

Human topoisomerase IB

IC50 :

Half maximal inhibitory concentration

LTopIB:

Leishmania topoisomerase IB

PtdCho:

Phosphatidylcholine

PtdIns:

Phosphatidylinositol

PtdSer:

Phosphatidylserine

iRFP:

Infrared fluorescent protein

THP-1:

Human monocytic leukemia cell line

UPLC-MS:

Ultra high performance liquid chromatography—mass spectrometry

References

  1. Djerassi C, Lam W-K (1991) Sponge phospholipids. Acc Chem Res 24:69–75

    Article  CAS  Google Scholar 

  2. Carballeira NM, Emiliano A, Morales R (1994) Positional distribution of octadecadienoic acids in sponge phosphatidylethanolamines. Lipids 29:523–525

    Article  CAS  PubMed  Google Scholar 

  3. Carballeira NM, Oyola D, Vicente J, Rodríguez AD (2007) Identification of novel α-methoxylated phospholipid fatty acids in the Caribbean sponge Erylus goffrilleri. Lipids 42:1047–1053

    Article  CAS  PubMed  Google Scholar 

  4. Makarieva TN, Santalova EA, Gorshkova IA, Dmitrenok AS, Guzil AG, Gorbach VI, Svetashev VI, Stonik VA (2002) A new cytotoxic fatty acid (5Z,9Z)-22-methyl-5,9-tetracosadienoic acid and the sterols from the Far Eastern sponge Geodinella robusta. Lipids 37:75–80

    Article  CAS  PubMed  Google Scholar 

  5. Carballeira NM, Reyes ED (1990) Identification of the new 23-methyl-5,9-pentacosadienoic acid in the sponge Cribrochalina vasculum. Lipids 24:371–374

    Article  Google Scholar 

  6. Ayanoglu E, Walkup RD, Sica D, Djerassi C (1982) Phospholipid studies of marine organisms: III. New phospholipid fatty acids from Petrosia ficiformis. Lipids 17:617–625

    Article  CAS  Google Scholar 

  7. Carballeira NM, Montano N, Vicente J, Rodriguez AD (2007) Novel cyclopropane fatty acids from the phospholipids of the Caribbean sponge Pseudospongosorites suberitoides. Lipids 42:519–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Carballeira NM, Thompson JE, Ayanoglu E, Djerassi C (1986) Biosynthetic studies of marine lipids. 5. The biosynthesis of long-chain branched fatty acids in marine sponges. J Org Chem 51:2751–2756

    Article  CAS  Google Scholar 

  9. Carballeira NM, Negrón V, Reyes ED (1992) Novel naturally occurring α-methoxylated acids from the phospholipids of Caribbean sponges. Tetrahedron 48:1053–1058

    Article  CAS  Google Scholar 

  10. Nemoto T, Yoshimo G, Ojika M, Sakagami Y (1997) Amphimic acids and related long-chain fatty acids as DNA topoisomerase I inhibitors from an Australian sponge Amphimedon sp.: isolation, structure, synthesis, and biological evaluation. Tetrahedron 53:16699–16710

    Article  CAS  Google Scholar 

  11. D’yakonov VA, Makarov AA, Dzhemileva LU, Makarova EKh, Khusnutdinova EK, Dzhemilev UM (2013) The facile synthesis of the 5Z,9Z-dienoic acids and their topoisomerase I inhibitory activities. Chem Commun 49:8401–8403

    Article  Google Scholar 

  12. D’yakonov VA, Dzhemileva LU, Makarov AA, Mulukova AR, Baev DS, Khusnutdinova EK, Tolstikova TG, Dzhemilev UM (2015) Stereoselective synthesis of 11-phenylundeca-5Z,9Z-dienoic acid and investigation of its human topoisomerase I and IIα inhibitory activity. Bioorg Med Chem Lett 25:2405–2408

    Article  PubMed  Google Scholar 

  13. Carballeira NM, Cartagena M, Li F, Chen Z, Prada CF, Calvo-Alvarez E, Reguera RM, Balaña-Fouce R (2012) First total synthesis of the (±)-2-methoxy-6-heptadecynoic acid and related 2-methoxylated analogs as effective inhibitors of the Leishmania topoisomerase IB enzyme. Pure Appl Chem 84:1867–1875

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Balaña-Fouce R, Redondo CM, Pérez-Pertejo Y, Díaz-González R, Reguera RM (2006) Targeting atypical trypanosomatid DNA topoisomerase I. Drug Discov Today 11:733–740

    Article  PubMed  Google Scholar 

  15. Hajdu E, van Soest RWM (1992) A revision of Atlantic Asteropus Sollas, 1888 (Demospongiae), including a description of three new species, and with a review of the family Coppatiidae Topsent, 1898. Bijdragen tot de Dierkunde 62:3–19

    Google Scholar 

  16. Privett OS, Dougherty KA, Erdahl WL, Stolyhwo A (1973) Lipid composition of developing soybeans. J Am Oil Chem Soc 50:516–520

    Article  CAS  PubMed  Google Scholar 

  17. Brose S, Baker A, Golovko M (2013) A fast one-step extraction and UPLC-MS/MS analysis for E2/D2 series prostaglandins and isoprostanes. Lipids 48:411–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Calvo-Álvarez E, Stamatakis K, Punzón C, Álvarez-Velilla R, Tejería A, Reguera RM (2015) Infrared fluorescent imaging as a potent tool for in vitro, ex vivo and in vivo models of visceral leishmaniasis. PLoS Negl trop Dis 9:e0003666

    Article  PubMed Central  PubMed  Google Scholar 

  19. Villa H, Otero-Marcos AR, Reguera RM, Balaña-Fouce R, García-Estrada C, Pérez-Pertejo Y, Tekwani BL, Myler PJ, Stuart KD, Bjornsti MA, Ordóñez D (2003) A novel active DNA topoisomerase I in Leishmania donovani. J Biol Chem 278:3521–3526

    Article  CAS  PubMed  Google Scholar 

  20. Balaña-Fouce R, Prada CF, Requena JM, Cushman M, Pommier Y, Álvarez-Velilla R, Escudero-Martínez JM, Calvo-Álvarez E, Pérez-Pertejo Y, Reguera RM (2012) Indotecan (LMP400) and AM13-55: two novel indenoisoquinolines show potential for treating visceral leishmaniasis. Antimicrob Agents Chemother 56:5264–5270

    Article  PubMed Central  PubMed  Google Scholar 

  21. Gunstone FD (1994) High resolution 13C NMR. A technique for the study of lipid structure and composition. Prog Lipid Res 33:19–28

    Article  CAS  PubMed  Google Scholar 

  22. Ayanoglu E, Popov S, Kornprobst JM, Aboud-Bichara A, Djerassi C (1983) Phospholipid studies of marine organisms: V. New α-methoxy acids from Higginsia tethyoides. Lipids 18:830–836

    Article  CAS  Google Scholar 

  23. Bligh EG, Dyer WJ (1959) A rapid method total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  24. Carballeira NM (2002) New advances in the chemistry of methoxylated lipids. Prog Lipid Res 41:437–456

    Article  CAS  PubMed  Google Scholar 

  25. Farokhi F, Grellier P, Clément M, Roussakis C, Loiseau PM, Genin-Seward E, Kornprobst J-M, Barnathan G, Wielgosz-Collin G (2013) Antimalarial activity of Axidjiferosides, new β-galactosylceramides from the African sponge Axinyssa djiferi. Mar Drugs 11:1304–1315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Costantino V, Fattorusso E, Imperatore C, Mangoni A (2004) Glycolipids from sponges. 13. Clarhamnoside, the first rhamnosylated α-galactosylceramide from Agelas clathrodes. improving spectral strategies for glycoconjugate structure determination. J Org Chem 69:1174–1179

    Article  CAS  PubMed  Google Scholar 

  27. Castelli S, Campagna A, Vassallo O, Tesauro C, Fiorani P, Tagliatesta P, Oteri F, Falconi M, Majumder HK, Desideri A (2009) Conjugated eicosapentaenoic acid inhibits human topoisomerase IB with a mechanism different from camptothecin. Arch Biochem Biophys 486:103–110

    Article  CAS  PubMed  Google Scholar 

  28. Carballeira NM, Montano N, Alvarez-Velilla R, Prada CF, Reguera RM, Balaña-Fouce R (2013) Synthesis of marine α-methoxylated fatty acid analogs that effectively inhibit the topoisomerase IB from Leishmania donovani with a mechanism different from that of camptothecin. Mar Drugs 11:3661–3675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Arouri A, Mouritsen OG (2013) Membrane-perturbing effect of fatty acids and lysolipids. Prog Lipid Res 52:130–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of the work described herein was initially supported by Award Number SC1GM084708 from the National Institutes of General Medical Sciences (NIGMS) of the NIH. N. Montano acknowledges the support of the UPR RISE program (Grant No. 2R25GM061151-13) for a graduate fellowship. We thank NIH for the COBRE Mass Spec Core Facility Grant 5P30GM103329-02. We also acknowledge financial support from the Ministerio de Economía y Competitividad (CYTED 214RT0482), Instituto de Salud Carlos III (Feder PI12/00104) and Junta de Castilla y León (grants Gr238 and LE182U13).The technical assistance of J. Vicente in the collection and classification of A. niger is appreciated. We also acknowledge the technical assistance of C. Adorno (UPR-Río Piedras) in the initial isolation work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Néstor M. Carballeira.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carballeira, N.M., Montano, N., Amador, L.A. et al. Novel Very Long-Chain α-Methoxylated Δ5,9 Fatty Acids from the Sponge Asteropus niger Are Effective Inhibitors of Topoisomerases IB. Lipids 51, 245–256 (2016). https://doi.org/10.1007/s11745-015-4114-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4114-9

Keywords

Navigation