Skip to main content
Log in

Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions

  • Methods
  • Published:
Lipids

Abstract

A series of different types of wax esters (represented by RCOOR′) were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS3 (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2]+, [RCO]+ and [RCO−H2O]+ that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: (1) [RCOOH2]+ for saturated wax esters, (2) [RCOOH2]+, [RCO]+ and [RCO−H2O]+ for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and (3) [RCOOH2]+ and [RCO]+ for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R′]+ and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2]+ ions for all types of wax esters and [R′−2H]+ ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APCI:

Atmospheric pressure chemical ionization

CI:

Chemical ionization

CID:

Collision induced dissociation

EI:

Electron ionization

ESI:

Electrospray ionization

MRM:

Multiple-reaction monitoring

MS/MS:

Tandem mass spectrometry

MS3 (MS/MS/MS):

Multi-stage tandem mass spectrometry

Pseudo MS3 :

In source dissociation combined with MS/MS

Q-TOF:

Quadrupole time-of-flight

References

  1. Tulloch AP (1971) Beeswax––structure of esters and their component hydroxy acids and diols. Chem Phys Lipids 6:235–265

    Article  CAS  Google Scholar 

  2. Nevenzel JC (1970) Occurrence, function and biosynthesis of wax esters in marine organisms. Lipids 5:308–319

    Article  CAS  PubMed  Google Scholar 

  3. Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  CAS  PubMed  Google Scholar 

  4. Blomquis GJ, Brakke JW, Byers BA, Jackson LL, Soliday CL (1972) Cuticular lipids of insects. 5. Cuticular wax esters of secondary alcohols from grasshoppers Melanoplus packardii and Melanoplus sanguinipes. Lipids 7:356–362

    Article  Google Scholar 

  5. Smith KR, Thiboutot DM (2008) Sebaceous gland lipids: friend or foe? J Lipid Res 49:271–281

    Article  CAS  PubMed  Google Scholar 

  6. Chen JZ, Green-Church KB, Nichols KK (2010) Shotgun lipidomic analysis of human meibomian gland secretions with electrospray ionization tandem mass spectrometry. Invest Ophthalmol Vis Sci 51:6220–6231

    Article  PubMed Central  PubMed  Google Scholar 

  7. Nicolaides N, Kaitaranta JK, Rawdah TN, Macy JI, Boswell FM 3rd, Smith RE (1981) Meibomian gland studies: comparison of steer and human lipids. Invest Ophthalmol Vis Sci 20:522–536

    CAS  PubMed  Google Scholar 

  8. Ryhage R, Stenhagen E (1959) Mass spectrometric studies. 2. Saturated normal long-chain esters of ethanol and higher alcohols. Arkiv Kemi 14:483–495

    CAS  Google Scholar 

  9. Aasen AJ, Hofstett Hh, Iyengar BTR, Holman RT (1971) Identification and analysis of wax esters by mass spectrometry. Lipids 6:502–507

    Article  CAS  Google Scholar 

  10. Spencer GF (1979) Alkoxy-Acyl combinations in the wax esters from winterized sperm whale oil by gas chromatography-mass spectrometry. J Am Oil Chem Soc 56:642–646

    Article  CAS  Google Scholar 

  11. Vajdi M, Nawar WW (1981) GC-MS analysis of some long-chain esters, ketones and propanediol diesters. J Am Oil Chem Soc 58:106–110

    Article  CAS  Google Scholar 

  12. Urbanova K, Vrkoslav V, Valterova I, Hakova M, Cvacka J (2012) Structural characterization of wax esters by electron ionization mass spectrometry. J Lipid Res 53:204–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Plattner RD, Spencer GF (1983) Chemical ionization mass-spectrometry of wax esters. Lipids 18:68–73

    Article  CAS  Google Scholar 

  14. Butovich IA, Uchiyama E, McCulley JP (2007) Lipids of human meibum: mass-spectrometric analysis and structural elucidation. J Lipid Res 48:2220–2235

    Article  CAS  PubMed  Google Scholar 

  15. Vrkoslav V, Urbanova K, Cvacka J (2010) Analysis of wax ester molecular species by high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A 1217:4184–4194

    Article  CAS  PubMed  Google Scholar 

  16. Chen JZ, Green-Church KB, Nichols KK (2011) Author response: on the presence of (O-acyl)-omega-hydroxy fatty acids and their esters in human meibomian gland secretions. Invest Ophthalmol Vis Sci 52:1894–1895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Fitzgerald M, Murphy RC (2007) Electrospray mass spectrometry of human hair wax esters. J Lipid Res 48:1231–1246

    Article  CAS  PubMed  Google Scholar 

  18. Santos S, Schreiber L, Graca J (2007) Cuticular waxes from ivy leaves (Hedera helix L.): analysis of high-molecular-weight esters. Phytochem Analysis 18:60–69

    Article  CAS  Google Scholar 

  19. Roberts LD, McCombie G, Titman CM, Griffin JL (2008) A matter of fat: an introduction to lipidomic profiling methods. J Chromatogr B 871:174–181

    Article  CAS  Google Scholar 

  20. Camera E, Ludovici M, Galante M, Sinagra JL, Picardo M (2010) Comprehensive analysis of the major lipid classes in sebum by rapid resolution high-performance liquid chromatography and electrospray mass spectrometry. J Lipid Res 51:3377–3388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Murphy RC, Fitzgerald M, Barkley RM (2008) Neutral lipidomics and mass spectrometry. In: Griffiths WJ (ed) Metabolomics, metabonomics and metabolite profiling. Royal Society of Chemistry, Cambridge

    Google Scholar 

  22. Garnier N, Cren-Olive C, Rolando C, Regert M (2002) Characterization of archaeological beeswax by electron ionization and electrospray ionization mass spectrometry. Anal Chem 74:4868–4877

    Article  CAS  PubMed  Google Scholar 

  23. Iven T, Herrfurth C, Hornung E, Heilmann M, Hofvander P, Stymne S, Zhu LH, Feussner I (2013) Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry. Plant Methods 9:24

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lam SM, Tong L, Reux B, Lear MJ, Wenk MR, Shui GH (2013) Rapid and sensitive profiling of tear wax ester species using high performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 1308:166–171

    Article  CAS  PubMed  Google Scholar 

  25. Brown SH, Kunnen CM, Duchoslav E, Dolla NK, Kelso MJ, Papas EB, Lazon de la Jara P, Willcox MD, Blanksby SJ, Mitchell TW (2013) A comparison of patient matched meibum and tear lipidomes. Invest Ophthalmol Vis Sci 54:7417–7424

    Article  CAS  PubMed  Google Scholar 

  26. Yocum AK, Chinnaiyan AM (2009) Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry. Brief Funct Genomic Proteomic 8:145–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kinsinger CR, Apffel J, Baker M, Bian X, Borchers CH, Bradshaw R, Brusniak MY, Chan DW, Deutsch EW, Domon B, Gorman J, Grimm R, Hancock W, Hermjakob H, Horn D, Hunter C, Kolar P, Kraus HJ, Langen H, Linding R, Moritz RL, Omenn GS, Orlando R, Pandey A, Ping P, Rahbar A, Rivers R, Seymour SL, Simpson RJ, Slotta D, Smith RD, Stein SE, Tabb DL, Tagle D, Yates JR, Rodriguez H (2011) Recommendations for mass spectrometry data quality metrics for open access data (corollary to the Amsterdam principles). J Proteome Res 11:1412–1419

    Article  PubMed Central  PubMed  Google Scholar 

  28. Keller BO, Suj J, Young AB, Whittal RM (2008) Interferences and contaminants encountered in modern mass spectrometry. Anal Chim Acta 627:71–81

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Green KB, Nichols KK (2013) Quantitative profiling of major neutral lipid classes in human meibum by direct infusion electrospray ionization mass spectrometry. Invest Ophthalmol Vis Sci 54:5730–5753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ginter JM, Zhou F, Johnston MV (2004) Generating protein sequence tags by combining cone and conventional collision induced dissociation in a quadrupole time-of-flight mass spectrometer. J Am Soc Mass Spectrom 15:1478–1486

    Article  CAS  PubMed  Google Scholar 

  31. Chen J, Shiyanov P, Schlager JJ, Green KB (2012) A pseudo MS3 approach for identification of disulfide-bonded proteins: uncommon product ions and database search. J Am Soc Mass Spectrom 23:225–243

    Article  CAS  PubMed  Google Scholar 

  32. Carroll DI, Dzidic I, Horning EC, Stillwell RN (1981) Atmospheric-pressure ionization mass-spectrometry. Appl Spectrosc Rev 17:337–406

    Article  CAS  Google Scholar 

  33. Munson MSB, Field FH (1966) Chemical ionization mass spectrometry. 2. Esters. J Am Chem Soc 88:4337–4345

    Article  CAS  Google Scholar 

  34. Bouchoux G (2013) From the mobile proton to wandering hydride ion: mechanistic aspects of gas-phase ion chemistry. J Mass Spectrom 48:505–518

    Article  CAS  PubMed  Google Scholar 

  35. Sultan J (2008) Collision induced dissociation of deprotonated guanine: fragmentation of pyrimidine ring and water adduct formation. Int J Mass Spectrom 273:58–68

    Article  CAS  Google Scholar 

  36. Tuytten R, Lemiere F, Esmans EL, Herrebout WA, van der Veken BJ, Dudley E, Newton RP, Witters E (2006) In-source CID of guanosine: gas phase ion-molecule reactions. J Am Soc Mass Spectrom 17:1050–1062

    Article  CAS  PubMed  Google Scholar 

  37. Tuytten R, Lemiere F, Van Dongen W, Esmans EL, Witters E, Herrebout W, Van der Veken B, Dudley E, Newton RP (2005) Intriguing mass spectrometric behavior of guanosine under low energy collision-induced dissociation: H2O adduct formation and gas-phase reactions in the collision cell. J Am Soc Mass Spectrom 16:1904

    Article  CAS  Google Scholar 

  38. Creaser CS, Wiliamson BL (1996) Ion-molecule reactions of benzoyl ions in a quadrupole ion trap mass spectrometer. J Chem Soc Perk T 2(3):427–433

    Article  Google Scholar 

  39. Creaser CS, Williamson BL (1994) Selective gas-phase ion-molecule reactions of the benzoyl ion. J Chem Soc, Chem Commun 14:1677–1678

    Article  Google Scholar 

  40. Attygalle AB, Kharbatia N, Bialecki J, Ruzicka J, Svatos A, Stauber EJ (2006) An unexpected ion-molecule adduct in negative-ion collision-induced decomposition ion-trap mass spectra of halogenated benzoic acids. Rapid Commun Mass Spectrom 20:2265–2270

    Article  CAS  PubMed  Google Scholar 

  41. Beuck S, Schwabe T, Grimme S, Schlorer N, Kamber M, Schanzer W, Thevis M (2009) Unusual mass spectrometric dissociation pathway of protonated isoquinoline-3-carboxamides due to multiple reversible water adduct formation in the gas phase. J Am Soc Mass Spectrom 20:2034–2048

    Article  CAS  PubMed  Google Scholar 

  42. Cao XJ, Yu Y, Ye XM, Mo WM (2009) Solvation in gas-phase reactions of sulfonic groups containing ionic liquids in electrospray ionization quadrupole ion trap mass spectrometry. Eur J Mass Spectrom 15:409–413

    Article  CAS  Google Scholar 

  43. Frycak P, Huskova R, Adam T, Lemr K (2002) Atmospheric pressure ionization mass spectrometry of purine and pyrimidine markers of inherited metabolic disorders. J Mass Spectrom 37:1242–1248

    Article  CAS  PubMed  Google Scholar 

  44. Ma JC, Dougherty DA (1997) The cation-pi interaction. Chem Rev 97:1303–1324

    Article  CAS  PubMed  Google Scholar 

  45. Deakyne CA, Meotner M (1985) Unconventional ionic hydrogen-bonds. 2. NH+ ···π. complexes of onium ions with olefins and benzene-derivatives. J Am Chem Soc 107:474–479

    Article  Google Scholar 

  46. Dua S, Bowie JH, Cerda BA, Wesdemiotis C (1998) Search for charge-remote reactions of even-electron organic negative ions in the gas phase. Anions derived from disubstituted adamantanes. J Chem Soc Perk T 2(6):1443–1448

    Article  Google Scholar 

  47. Dua S, Bowie JH, Cerda BA, Wesdemiotis C (1998) The facile loss of formic acid from an anion system in which the charged and reacting centres cannot interact. Chem Commun 2:183–184

    Article  Google Scholar 

  48. Field FH (1968) Chemical ionization mass spectrometry. 8. Alkenes and alkynes. J Am Chem Soc 90:5649–5656

    Article  CAS  Google Scholar 

  49. Vrcek IV, Vrcek V, Siehl HU (2002) Quantum chemical study of degenerate hydride shifts in acyclic tertiary carbocations. J Phys Chem A 106:1604–1611

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank NIH for funding (grant number: NEI R01EY015519) and Jeremy Keirsey at the Campus Chemical Instrument Center of the Ohio State University for proofreading and critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Chen.

Electronic supplementary material

Below is the link to the Electronic supplementary material.

Supplementary material 1 (PDF 905 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Green, K.B. & Nichols, K.K. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions. Lipids 50, 821–836 (2015). https://doi.org/10.1007/s11745-015-4044-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4044-6

Keywords

Navigation