Skip to main content
Log in

Inhibition of Cycloartenol Synthase (CAS) Function in Tobacco BY-2 Cells

  • Original Article
  • Published:
Lipids

Abstract

Tobacco BY-2 cell suspensions are our preferred model for studying isoprenoid biosynthesis pathways, due to their easy genetic transformation and the efficient absorption of metabolic precursors, intermediates, and/or inhibitors. Using this model system, we have analyzed the effects of chemical and genetic blockage of cycloartenol synthase (CAS, EC 5.4.99.8), an oxidosqualene cyclase that catalyzes the first committed step in the sterol pathway of plants. BY-2 cells were treated with RO 48-8071, a potent inhibitor of oxidosqualene cyclization. Short-term treatments (24 h) resulted in accumulation of oxidosqualene with no changes in the final sterol products. Interestingly, long-term treatments (6 days) induced down-regulation in gene expression not only of CAS but also of the SMT2 gene coding sterol methyltransferase 2 (EC 2.1.1.41). This explains some of the increase in 24-methyl sterols at the expense of the 24-ethyl sterols stigmasterol and sitosterol. In our alternative strategy, CAS gene expression was partially blocked by using an inducible artificial microRNA. The limited effectiveness of this approach might be explained by some dependence of the machinery for RNAi formation on an operating MVA/sterol pathway. For comparison we checked the effect of RO 48-8071 on a green cell suspension of Arabidopsis and on seedlings, containing a small spectrum of triterpenes besides phytosterols. Triterpenes remained essentially unaffected, but phytosterol accumulation was clearly diminished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAS:

Cycloartenol synthase

NtCAS:

Nicotiana tabacum CAS

RO 48-8071:

(4-Bromophenyl)[2-fluoro-4-[[6-(methyl-2- propenylamino)hexyl]oxy]phenyl]-methanone

SMT:

Sterol methyltransferase

amiRNA:

Artificial micro interfering RNA

RNAi:

Interfering RNA

microRNA:

Small interfering RNA

MVA:

Mevalonic acid

BY-2 cells:

(Tobacco) Bright Yellow-2 cells

LAS:

Lanosterol synthase

MEP:

Methyl erythritol phosphate

PFTE:

Polytetrafluoroethylene

GC-FID:

Gas chromatography with flame ionization detector

References

  1. Hartmann M-A (1998) Plant sterols and the membrane environment. Trends Plant Sci 3:170–175

    Article  Google Scholar 

  2. Clouse SD (2002) Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell 14:1995–2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Schaller H (2003) The role of sterols in plant growth and development. Prog Lipid Res 42:163–175

    Article  CAS  PubMed  Google Scholar 

  4. Vriet C, Russinova E, Reuzeau C (2013) From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. Mol Plant 6:1738–1757

    Article  CAS  PubMed  Google Scholar 

  5. Griebel T, Zeier J (2010) A role for β-sitosterol to stigmasterol conversion in plant–pathogen interactions. Plant J 63:254–268

    Article  CAS  PubMed  Google Scholar 

  6. Schrick K, Fujioka S, Takatsuto S, Stierhof YD, Stransky H, Yoshida S, Jürgens G (2004) A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. Plant J 38:227–243

    Article  CAS  PubMed  Google Scholar 

  7. Schrick K, DeBolt S, Bulone V (2012) Deciphering the molecular functions of sterols in cellulose biosynthesis. Front Plant Sci 3:84. doi:10.3389/fpls.2012.00084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Men S, Boutté Y, Ikeda Y, Li X, Palme K, Stierhof YD, Hartmann M-A, Moritz T, Grebe M (2008) Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat Cell Biol 10:237–244

    Article  CAS  PubMed  Google Scholar 

  9. Brodersen P, Sakvarelidze-Achard L, Schaller H, Khafif M, Schott G, Bendahmane A, Voinnet O (2012) Isoprenoid biosynthesis is required for miRNA function and affects membrane association of ARGONAUTE 1 in Arabidopsis. Proc Natl Acad Sci 109:1778–1783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Mongrand S, Morel J, Laroche J, Claverol S, Carde J-P, Hartmann M-A, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ (2004) Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279:36277–36286

    Article  CAS  PubMed  Google Scholar 

  11. Benveniste P (2004) Biosynthesis and accumulation of sterols. Annu Rev Plant Biol 55:429–457

    Article  CAS  PubMed  Google Scholar 

  12. Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111:6423–6451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Suzuki M, Xiang T, Ohyama K, Seki H, Saito K, Muranaka T, Hayashi H, Katsube Y, Kushiro T, Shibuya M, Ebizuka Y (2006) Lanosterol synthase in dicotyledonous plants. Plant Cell Physiol 47:565–571

    Article  CAS  PubMed  Google Scholar 

  14. Ohyama K, Suzuki M, Kikuchi J, Saito K, Muranaka T (2009) Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis. Proc Natl Acad Sci 106:725–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gas-Pascual E, Berna A, Bach TJ, Schaller H (2014) Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana. PLoS One 9(10):e109156. doi:10.1371/journal.pone.0109156

    Article  PubMed Central  PubMed  Google Scholar 

  16. Giner J-L, Djerassi C (1995) A reinvestigation of the biosynthesis of lanosterol in Euphorbia lathyris. Phytochemistry 39:333–335

    Article  CAS  Google Scholar 

  17. Miller MB, Haubrich BA, Wang Q, Snell WJ, Nes WD (2012) Evolutionary conserved Δ25(27)-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii. J Lipid Res 53:1636–1645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Disch A, Schwender J, Müller C, Lichtenthaler HK, Rohmer M (1998) Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J 333(Pt 2):381–388

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Schwender J, Gemünden C, Lichtenthaler HK (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212:416–423

    Article  CAS  PubMed  Google Scholar 

  20. Bach TJ (1986) Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis? Lipids 21:82–88

    Article  CAS  PubMed  Google Scholar 

  21. Nes WD, Venkatramesh M (1997) Enzymology of phytosterol transformations. In: Parish EJ, Nes WD (eds) Biochemistry and function of sterols, Chapter 8. CRC Press, Boca-Raton, pp 111–122

  22. Chappell J (1995) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107:1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Babiychuk E, Bouvier-Navé P, Compagnon V, Suzuki M, Muranaka T, Van Montagu M, Kushnir S, Schaller H (2008) Allelic mutant series reveal distinct functions for Arabidopsis cycloartenol synthase 1 in cell viability and plastid biogenesis. Proc Natl Acad Sci 105:3163–3168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Bach TJ, Lichtenthaler HK (1983) Inhibition by mevinolin of plant growth, sterol formation and pigment accumulation. Physiol Plant 59:50–60

    Article  CAS  Google Scholar 

  25. Rahier A, Bouvier P, Cattel L, Narula A, Benveniste P (1983) Inhibition of 2,3-oxidosqualene: β-amyrin-cyclase, S-adenosyl-l-methionine: cycloartenol C-24-methyltransferase and cycloeucalenol: obtusifoliol isomerase by rationally designed molecules containing a tertiary amine function. Biochem Soc Trans 11:537–543

    CAS  PubMed  Google Scholar 

  26. Grandmougin A, Bouvier-Navé P, Ullmann P, Benveniste P, Hartmann M-A (1989) Cyclopropyl sterol and phospholipid composition of membrane fractions from maize roots treated with fenpropimorph. Plant Physiol 90:591–597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hemmerlin A, Bach TJ (1998) Effects of mevinolin on cell cycle progression and viability of tobacco BY-2 cells. Plant J 14:65–74

    Article  CAS  PubMed  Google Scholar 

  28. Wentzinger LF, Bach TJ, Hartmann M-A (2002) In vivo inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Physiol 130:334–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Liu J, Nes WD (2009) Steroidal triterpenes: design of substrate-based inhibitors of ergosterol and sitosterol synthesis. Molecules 14:4690–4706

    Article  CAS  PubMed  Google Scholar 

  30. Haubrich BA, Singha UK, Miller MB, Nes CR, Anyatonwu H, Lecordier L, Patkar P, Leaver DJ, Villalta F, Vanhollebeke B, Chaudhuri M, Nes WD (2015) Discovery of an ergosterol-signaling factor the regulates Trypanosoma brucei growth. J Lipid Res 56:331–341

    Article  CAS  PubMed  Google Scholar 

  31. Burger C, Rondet S, Benveniste P, Schaller H (2003) Virus-induced silencing of sterol biosynthetic genes: identification of a Nicotiana tabacum L. obtusifoliol-14α-demethylase (CYP51) by genetic manipulation of the sterol biosynthetic pathway in Nicotiana benthamiana L. J Exp Bot 54:1675–1683

    Article  CAS  PubMed  Google Scholar 

  32. Wentzinger L, Gerber E, Bach TJ, Hartmann M-A (2013) Occurrence of two acetoacetyl-coenzyme A thiolases with distinct expression patterns and subcellular localization in tobacco. In: Bach TJ, Rohmer M (eds) Isoprenoid synthesis in plants and microorganisms: new concepts and experimental approaches, Chapter 24, Springer, New York, pp 347–365

  33. Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the ‘HeLa’ cells in the biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  34. Hemmerlin A, Gerber E, Feldtrauer J-F, Wentzinger L, Hartmann M-A, Tritsch D, Hoeffler J-F, Rohmer M, Bach TJ (2004) A review of tobacco BY-2 cells as an excellent system to study the biosynthesis and function of sterols and other isoprenoids. Lipids 39:723–735

    CAS  PubMed  Google Scholar 

  35. Morand OH, Aebi JD, Dehmlow H, Ji Y-H, Gains N, Lengsfeld H, Himber J (1997) Ro 48-8071, a new 2,3-oxidosqualene:lanosterol cyclase inhibitor lowering plasma cholesterol in hamsters, squirrel monkeys, and minipigs: comparison to simvastatin. J Lipid Res 38:273–390

    Google Scholar 

  36. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zuo J, Niu Q-W, Chua N-H (2000) Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273

    Article  CAS  PubMed  Google Scholar 

  38. Criqui MC, Parmentier Y, Derevier A, Shen W-H, Dong A, Genschik P (2000) Cell cycle-dependent proteolysis and ectopic overexpression of cyclin B1 in tobacco BY2 cells. Plant J 24:763–773

    Article  CAS  PubMed  Google Scholar 

  39. Gerber E, Hemmerlin A, Hartmann M, Heintz D, Hartmann M-A, Mutterer J, Rodríguez-Concepción M, Boronat A, Van Dorsselaer A, Rohmer M, Crowell DN, Bach TJ (2009) The plastidial 2-C-methyl-D-erythritol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells. Plant Cell 21:285–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Rahier A, Benveniste P (1989) Mass spectral identification of phytosterols. In: Nes WD, Parish E (eds) Analysis of sterols and other significant steroids. Academic Press, New York, pp 223–250

    Chapter  Google Scholar 

  41. Menges M, Murray JA (2002) Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J 30:203–212

    Article  CAS  PubMed  Google Scholar 

  42. Moreau RA, Whitaker BD, Hicks KB (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Progr Lipid Res 41:457–500

    Article  CAS  Google Scholar 

  43. Corey EJ, Matsuda SP, Bartel B (1993) Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proc Natl Acad Sci 90:11628–11632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kolesnikova MD, Xiong Q, Lodeiro S, Hua L, Matsuda SP (2006) Lanosterol biosynthesis in plants. Arch Biochem Biophys 447:87–95

    Article  CAS  PubMed  Google Scholar 

  45. Shinozaki J, Shibuya M, Masuda K, Ebizuka Y (2007) Squalene cyclase and oxidosqualene cyclase from a fern. FEBS Lett 582:310–318

    Article  PubMed  Google Scholar 

  46. Schaeffer A, Bronner R, Benveniste P, Schaller H (2001) The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1. Plant J 25:605–615

    Article  CAS  PubMed  Google Scholar 

  47. Diener AC, Li HX, Zhou WX, Whoriskey WJ, Nes WD, Fink GR (2000) STEROL METHYLTRANSFERASE 1 controls the level of cholesterol in plants. Plant Cell 12:853–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Centre National de la Recherche Scientifique (CNRS), by the Université de Strasbourg and by the Agence Nationale de la Recherche (ANR grants “Terpene”, NT05-3-45695 and “Biosis”, BLAN06-2_135891). We wish to thank Prof. Nam-Hai Chua (Rockefeller University) for providing us with the pER8 estradiol inducible vector. We thank Dr. Marie-Claire Criqui (IBMP Strasbourg) for providing the MM2D cells. We are indebted to Prof. Katrina Cornish (Department of Horticulture and Crop Science, The Ohio State University, Wooster OH, 44691, USA) for critically reading the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Bach.

Additional information

G. J. Schroepfer, Jr. Memorial Sterol Symposium.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gas-Pascual, E., Simonovik, B., Schaller, H. et al. Inhibition of Cycloartenol Synthase (CAS) Function in Tobacco BY-2 Cells. Lipids 50, 761–772 (2015). https://doi.org/10.1007/s11745-015-4036-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4036-6

Keywords

Navigation