Skip to main content
Log in

Baker’s Yeast Deficient in Storage Lipid Synthesis Uses cis-Vaccenic Acid to Reduce Unsaturated Fatty Acid Toxicity

  • Original Article
  • Published:
Lipids

An Erratum to this article was published on 23 June 2015

Abstract

The role of cis-vaccenic acid (18:1n-7) in the reduction of unsaturated fatty acids toxicity was investigated in baker’s yeast Saccharomyces cerevisiae. The quadruple mutant (QM, dga1Δ lro1Δ are1Δ are2Δ) deficient in enzymes responsible for triacylglycerol and steryl ester synthesis has been previously shown to be highly sensitive to exogenous unsaturated fatty acids. We have found that cis-vaccenic acid accumulated during cultivation in the QM cells but not in the corresponding wild type strain. This accumulation was accompanied by a reduction in palmitoleic acid (16:1n-7) content in the QM cells that is consistent with the proposed formation of cis-vaccenic acid by elongation of palmitoleic acid. Fatty acid analysis of individual lipid classes from the QM strain revealed that cis-vaccenic acid was highly enriched in the free fatty acid pool. Furthermore, production of cis-vaccenic acid was arrested if the mechanism of fatty acids release to the medium was activated. We also showed that exogenous cis-vaccenic acid did not affect viability of the QM strain at concentrations toxic for palmitoleic or oleic acids. Moreover, addition of cis-vaccenic acid to the growth medium provided partial protection against the lipotoxic effects of exogenous oleic acid. Transformation of palmitoleic acid to cis-vaccenic acid is thus a rescue mechanism enabling S. cerevisiae cells to survive in the absence of triacylglycerol synthesis as the major mechanism for unsaturated fatty acid detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DAG:

Diacylglycerol

FA:

Fatty acid(s)

GC:

Gas chromatography

NP40:

Nonidet P-40

PL:

Phospholipid(s)

QM:

Quadruple mutant dga1Δ lro1Δ are1Δ are2Δ

SE:

Steryl ester(s)

TAG:

Triacylglycerol(s)

TLC:

Thin layer chromatography

VA:

cis-Vaccenic acid

References

  1. Klug L, Daum G (2014) Yeast lipid metabolism at a glance. FEMS Yeast Res 14(3):369–388

    Article  CAS  PubMed  Google Scholar 

  2. Koch B, Schmidt C, Daum G (2014) Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev. doi:10.1111/1574-6976.12069

    PubMed  Google Scholar 

  3. Kohlwein SD (2010) Triacylglycerol homeostasis: insights from yeast. J Biol Chem 285(21):15663–15667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kohlwein SD (2010) Obese and anorexic yeasts: experimental models to understand the metabolic syndrome and lipotoxicity. Biochim Biophys Acta 1801(3):222–229

    Article  CAS  PubMed  Google Scholar 

  5. Rajakumari S, Grillitsch K, Daum G (2008) Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res 47(3):157–171

    Article  CAS  PubMed  Google Scholar 

  6. Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97(12):6487–6492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL (2002) The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 277(11):8877–8881

    Article  CAS  PubMed  Google Scholar 

  8. Oelkers P, Tinkelenberg A, Erdeniz N, Cromley D, Billheimer JT, Sturley SL (2000) A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast. J Biol Chem 275(21):15609–15612

    Article  CAS  PubMed  Google Scholar 

  9. Sandager L, Gustavsson MH, Stahl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277(8):6478–6482

    Article  CAS  PubMed  Google Scholar 

  10. Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum RJ, Aljinovic G, Pohl TM, Rothstein R, Sturley SL (1996) Sterol esterification in yeast: a two-gene process. Science 272(5266):1353–1356

    Article  CAS  PubMed  Google Scholar 

  11. Yu C, Kennedy NJ, Chang CC, Rothblatt JA (1996) Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA: sterol acyltransferase. J Biol Chem 271(39):24157–24163

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Q, Chieu HK, Low CP, Zhang S, Heng CK, Yang H (2003) Schizosaccharomyces pombe cells deficient in triacylglycerols synthesis undergo apoptosis upon entry into the stationary phase. J Biol Chem 278(47):47145–47155

    Article  CAS  PubMed  Google Scholar 

  13. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100(6):3077–3082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Low CP, Yang H (2008) Programmed cell death in fission yeast Schizosaccharomyces pombe. Biochim Biophys Acta 1783(7):1335–1349

    Article  CAS  PubMed  Google Scholar 

  15. Connerth M, Czabany T, Wagner A, Zellnig G, Leitner E, Steyrer E, Daum G (2010) Oleate inhibits steryl ester synthesis and causes liposensitivity in yeast. J Biol Chem 285(35):26832–26841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Garbarino J, Padamsee M, Wilcox L, Oelkers PM, D’Ambrosio D, Ruggles KV, Ramsey N, Jabado O, Turkish A, Sturley SL (2009) Sterol and diacylglycerol acyltransferase deficiency triggers fatty acid-mediated cell death. J Biol Chem 284(45):30994–31005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Petschnigg J, Wolinski H, Kolb D, Zellnig G, Kurat CF, Natter K, Kohlwein SD (2009) Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. J Biol Chem 284(45):30981–30993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Siloto RM, Truksa M, Brownfield D, Good AG, Weselake RJ (2009) Directed evolution of acyl-CoA: diacylglycerol acyltransferase: development and characterization of Brassica napus DGAT1 mutagenized libraries. Plant Physiol Biochem 47(6):456–461

    Article  CAS  PubMed  Google Scholar 

  19. Siloto RM, Truksa M, He X, McKeon T, Weselake RJ (2009) Simple methods to detect triacylglycerol biosynthesis in a yeast-based recombinant system. Lipids 44(10):963–973

    Article  CAS  PubMed  Google Scholar 

  20. Sorger D, Athenstaedt K, Hrastnik C, Daum G (2004) A yeast strain lacking lipid particles bears a defect in ergosterol formation. J Biol Chem 279(30):31190–31196

    Article  CAS  PubMed  Google Scholar 

  21. Lee CK, Araki N, Sowersby DS, Lewis LK (2011) Factors affecting chemical-based purification of DNA from Saccharomyces cerevisiae. Yeast 29(2):73–80

    Article  PubMed  Google Scholar 

  22. Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20(6):1425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  24. Spanova M, Czabany T, Zellnig G, Leitner E, Hapala I, Daum G (2010) Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast Saccharomyces cerevisiae. J Biol Chem 285(9):6127–6133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  26. Makula RA, Finnerty WR (1971) Microbial assimilation of hydrocarbons: phospholipid metabolism. J Bacteriol 107(3):806–814

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Yazawa H, Kumagai H, Uemura H (2013) Secretory production of ricinoleic acid in fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 97(19):8663–8671

    Article  CAS  PubMed  Google Scholar 

  28. Kainou K, Kamisaka Y, Kimura K, Uemura H (2006) Isolation of Δ12 and ω3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and alpha-linolenic acids in Saccharomyces cerevisiae. Yeast 23(8):605–612

    Article  CAS  PubMed  Google Scholar 

  29. Burns TA, Kadegowda AK, Duckett SK, Pratt SL, Jenkins TC (2012) Palmitoleic (16:1 cis-9) and cis-vaccenic (18:1 cis-11) acid alter lipogenesis in bovine adipocyte cultures. Lipids 47(12):1143–1153

    Article  CAS  PubMed  Google Scholar 

  30. Xue JA, Mao X, Yang ZR, Wu YM, Jia XY, Zhang L, Yue AQ, Wang JP, Li RZ (2013) Expression of yeast acyl-CoA-9 desaturase leads to accumulation of unusual monounsaturated fatty acids in soybean seeds. Biotechnol Lett 35(6):951–959

    Article  CAS  PubMed  Google Scholar 

  31. David AT, Charles EM (1996) Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae. J Biol Chem 271:18413–18422

    Article  Google Scholar 

  32. Scharnewski M, Pongdontri P, Mora G, Hoppert M, Fulda M (2008) Mutants of Saccharomyces cerevisiae deficient in acyl-CoA synthetases secrete fatty acids due to interrupted fatty acid recycling. FEBS J 275(11):2765–2778

    Article  CAS  PubMed  Google Scholar 

  33. Gallagher EJ, Leroith D, Karnieli E (2011) The metabolic syndrome—from insulin resistance to obesity and diabetes. Med Clin North Am 95(5):855–873

    Article  CAS  PubMed  Google Scholar 

  34. Pineau L, Colas J, Dupont S, Beney L, Fleurat-Lessard P, Berjeaud JM, Berges T, Ferreira T (2009) Lipid-induced ER stress: synergistic effects of sterols and saturated fatty acids. Traffic 10(6):673–690

    Article  CAS  PubMed  Google Scholar 

  35. Holic R, Yazawa H, Kumagai H, Uemura H (2012) Engineered high content of ricinoleic acid in fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 95(1):179–187

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank K. Athenstaedt (Technical University, Graz, Austria), M. H. Gustavsson (Uppsala Genetic Center, Sweden) and M. Fulda (University of Göttingen, Germany) for kindly providing yeast strains used in this study. We thank R. Weselake and Ch. Kazala (University of Alberta, Canada) for critical reading of the manuscript. This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0785-11 and APVV-0662-11 and VEGA agency grant No. 2/0180/12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Holic.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sec, P., Garaiova, M., Gajdos, P. et al. Baker’s Yeast Deficient in Storage Lipid Synthesis Uses cis-Vaccenic Acid to Reduce Unsaturated Fatty Acid Toxicity. Lipids 50, 621–630 (2015). https://doi.org/10.1007/s11745-015-4022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4022-z

Keywords

Navigation