Skip to main content
Log in

Activation of AMP-kinase by Policosanol Requires Peroxisomal Metabolism

  • Original Article
  • Published:
Lipids

Abstract

Policosanol, a well-defined mixture of very long chain primary alcohols that is available as a nutraceutical product, has been reported to lower blood cholesterol levels. The present studies demonstrate that policosanol promotes the phosphorylation of AMP-kinase and HMG-CoA reductase in hepatoma cells and in mouse liver after intragastric administration, providing a possible means by which policosanol might lower blood cholesterol levels. Treatment of hepatoma cells with policosanol produced a 2.5-fold or greater increase in the phosphorylation of AMP-kinase and HMG-CoA reductase, and increased the phosphorylation of Ca++/calmodulin-dependent kinase kinase (CaMKK), an upstream AMP-kinase kinase. Intragastric administration of policosanol to mice similarly increased the phosphorylation of hepatic HMG-CoA reductase and AMP-kinase by greater than 2-fold. siRNA-mediated suppression of fatty aldehyde dehydrogenase, fatty acyl-CoA synthetase 4, and acyl-CoA acetyltransferase expression in hepatoma cells prevented the phosphorylation of AMP-kinase and HMG-CoA reductase by policosanol, indicating that metabolism of these very long chain alcohols to activated fatty acids is necessary for the suppression of cholesterol synthesis, presumably by increasing cellular AMP levels. Subsequent peroxisomal β-oxidation probably augments this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CaMKK:

Calcium-calmodulin-dependent kinase kinase

References

  1. Marinangeli CP, Jones PJ, Kassis AN, Eskin MN (2010) Policosanols as nutraceuticals: fact or fiction. Crit Rev Food Sci Nutr 50:259–267

    Article  PubMed  CAS  Google Scholar 

  2. Torres O, Agramonte AJ, Illnait J, Mas Ferreiro R, Fernandez L, Fernandez JC (1995) Treatment of hypercholesterolemia in NIDDM with policosanol. Diabetes Care 18:393–397

    Article  PubMed  CAS  Google Scholar 

  3. Arruzazabala ML, Molina V, Mas R, Fernandez L, Carbajal D, Valdes S, Castano G (2002) Antiplatelet effects of policosanol (20 and 40 mg/day) in healthy volunteers and dyslipidaemic patients. Clin Exp Pharmacol Physiol 29:891–897

    Article  PubMed  CAS  Google Scholar 

  4. Castano G, Mas R, Fernandez L, Illnait J, Gamez R, Alvarez E (2001) Effects of policosanol 20 versus 40 mg/day in the treatment of patients with type II hypercholesterolemia: a 6-month double-blind study. Int J Clin Pharmacol Res 21:43–57

    PubMed  CAS  Google Scholar 

  5. Cubeddu LX, Cubeddu RJ, Heimowitz T, Restrepo B, Lamas GA, Weinberg GB (2006) Comparative lipid-lowering effects of policosanol and atorvastatin: a randomized, parallel, double-blind, placebo-controlled trial. Am Heart J 152:982 e981–e985

    Google Scholar 

  6. Berthold HK, Unverdorben S, Degenhardt R, Bulitta M, Gouni-Berthold I (2006) Effect of policosanol on lipid levels among patients with hypercholesterolemia or combined hyperlipidemia: a randomized controlled trial. Jama 295:2262–2269

    Article  PubMed  CAS  Google Scholar 

  7. Francini-Pesenti F, Beltramolli D, Dall’acqua S, Brocadello F (2008) Effect of sugar cane policosanol on lipid profile in primary hypercholesterolemia. Phytother Res 22:318–322

    Article  PubMed  CAS  Google Scholar 

  8. Singh DK, Li L, Porter TD (2006) Policosanol inhibits cholesterol synthesis in hepatoma cells by activation of AMP-kinase. J Pharmacol Exp Ther 318:1020–1026

    Article  PubMed  CAS  Google Scholar 

  9. Menendez R, Amor AM, Rodeiro I, Gonzalez RM, Gonzalez PC, Alfonso JL, Mas R (2001) Policosanol modulates HMG-CoA reductase activity in cultured fibroblasts. Arch Med Res 32:8–12

    Article  PubMed  CAS  Google Scholar 

  10. Menendez R, Fernandez SI, Del Rio A, Gonzalez RM, Fraga V, Amor AM, Mas RM (1994) Policosanol inhibits cholesterol biosynthesis and enhances low density lipoprotein processing in cultured human fibroblasts. Biol Res 27:199–203

    Article  PubMed  CAS  Google Scholar 

  11. Menendez R, Amor AM, Gonzalez RM, Fraga V, Mas R (1996) Effect of policosanol on the hepatic cholesterol biosynthesis of mormocholesterolemic rats. Biol Res 29:253–257

    PubMed  CAS  Google Scholar 

  12. Menendez R, Arruzazabala L, Mas R, Del Rio A, Amor AM, Gonzalez RM, Carbajal D, Fraga V, Molina V, Illnait J (1997) Cholesterol-lowering effect of policosanol on rabbits with hypercholesterolaemia induced by a wheat starch-casein diet. Br J Nutr 77:923–932

    Article  PubMed  CAS  Google Scholar 

  13. Wang Y, Ebine N, Jia X, Jones PJ, Fairow C, Jaeger R (2005) Very long chain fatty acids (policosanols) and phytosterols affect plasma lipid levels and cholesterol biosynthesis in hamsters. Metabolism 54:508–514

    Article  PubMed  CAS  Google Scholar 

  14. Wang YW, Jones PJ, Pischel I, Fairow C (2003) Effects of policosanols and phytosterols on lipid levels and cholesterol biosynthesis in hamsters. Lipids 38:165–170

    Article  PubMed  CAS  Google Scholar 

  15. Oliaro-Bosso S, Calcio Gaudino E, Mantegna S, Giraudo E, Meda C, Viola F, Cravotto G (2009) Regulation of HMGCoA reductase activity by policosanol and octacosadienol, a new synthetic analogue of octacosanol. Lipids 44:907–916

    Article  PubMed  CAS  Google Scholar 

  16. Clarke PR, Hardie DG (1990) Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. Embo J 9:2439–2446

    PubMed  CAS  Google Scholar 

  17. Beg ZH, Stonik JA, Brewer HB Jr (1978) 3-Hydroxy-3-methylglutaryl coenzyme A reductase: regulation of enzymatic activity by phosphorylation and dephosphorylation. Proc Natl Acad Sci USA 75:3678–3682

    Article  PubMed  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  19. Carling D, Sanders MJ, Woods A (2008) The regulation of AMP-activated protein kinase by upstream kinases. Int J Obes (Lond) 32(Suppl 4):S55–S59

    Article  CAS  Google Scholar 

  20. Rizzo WB, Craft DA, Dammann AL, Phillips MW (1987) Fatty alcohol metabolism in cultured human fibroblasts. Evidence for a fatty alcohol cycle. J Biol Chem 262:17412–17419

    PubMed  CAS  Google Scholar 

  21. Kabir Y, Kimura S (1993) Biodistribution and metabolism of orally administered octacosanol in rats. Ann Nutr Metab 37:33–38

    Article  PubMed  CAS  Google Scholar 

  22. Menendez R, Marrero D, Mas R, Fernandez I, Gonzalez L, Gonzalez RM (2005) In vitro and in vivo study of octacosanol metabolism. Arch Med Res 36:113–119

    Article  PubMed  CAS  Google Scholar 

  23. Za’tara G, Bar-Tana J, Kalderon B, Suter M, Morad E, Samovski D, Neumann D, Hertz R (2008) AMPK activation by long chain fatty acyl analogs. Biochem Pharmacol 76:1263–1275

    Article  PubMed  Google Scholar 

  24. Menendez R, Mas R, Amor AM, Rodeiros I, Gonzalez RM, Alfonso JL (2001) Inhibition of cholesterol biosynthesis in cultured fibroblasts by D003, a mixture of very long chain saturated fatty acids. Pharmacol Res 44:299–304

    Article  PubMed  CAS  Google Scholar 

  25. Beg ZH, Stonik JA, Brewer HB Jr (1987) Modulation of the enzymic activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase by multiple kinase systems involving reversible phosphorylation: a review. Metabolism 36:900–917

    Article  PubMed  CAS  Google Scholar 

  26. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646

    Article  PubMed  CAS  Google Scholar 

  27. Hargrove JL, Greenspan P, Hartle DK (2004) Nutritional significance and metabolism of very long chain fatty alcohols and acids from dietary waxes. Exp Biol Med (Maywood) 229:215–226

    CAS  Google Scholar 

  28. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19

    Article  PubMed  CAS  Google Scholar 

  29. Sakakibara S, Yamauchi T, Oshima Y, Tsukamoto Y, Kadowaki T (2006) Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochem Biophys Res Commun 344:597–604

    Article  PubMed  CAS  Google Scholar 

  30. Haim D, Berrios M, Valenzuela A, Videla LA (2009) Trace quantification of 1-octacosanol and 1-triacontanol and their main metabolites in plasma by liquid-liquid extraction coupled with gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877:4154–4158

    Article  PubMed  CAS  Google Scholar 

  31. Keller S, Gimmler F, Jahreis G (2008) Octacosanol administration to humans decreases neutral sterol and bile acid concentration in feces. Lipids 43:109–115

    Article  PubMed  CAS  Google Scholar 

  32. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243

    Article  PubMed  CAS  Google Scholar 

  33. Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K (2002) Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem 277:3829–3835

    Article  PubMed  CAS  Google Scholar 

  34. Zydowo MM, Smolenski RT, Swierczynski J (1993) Acetate-induced changes of adenine nucleotide levels in rat liver. Metabolism 42:644–648

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Geza Bruckner for helpful insight and advice, and numerous anonymous reviewers for their comments and suggestions. This work was supported by the National Institutes of Health National Center for Complementary and Alternative Medicine [Grant AT003488].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd D. Porter.

About this article

Cite this article

Banerjee, S., Ghoshal, S. & Porter, T.D. Activation of AMP-kinase by Policosanol Requires Peroxisomal Metabolism. Lipids 46, 311–321 (2011). https://doi.org/10.1007/s11745-011-3540-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3540-6

Keywords

Navigation