Skip to main content
Log in

Reversible Inhibitory Effects of Saturated and Unsaturated Alkyl Esters on the Carboxylesterases Activity in Rat Intestine

  • Original Article
  • Published:
Lipids

Abstract

This study was conducted to investigate the relationship between the carbon chain length/double bonds of alkyl esters and their inhibitory potency/mechanism on carboxylesterases (CESs). CESs activity was evaluated by inhibition of adefovir dipivoxil (ADV) metabolism in rat intestinal homogenates. Furthermore, the inhibitory effect of BNPP and ethyl (E)-hex-2-enoate (C8:1) on drug absorption was evaluated in situ intestinal perfusion model. The results showed that the rank order of the inhibitory potency on CESs was C10:0 > C8:0 > C6:0 > C4:0 > C12:0, C8:1 > C8:0, C6:1 > C6:0, while the esters (C14:0, C13:1, C16:0, C18:0, C17:1, C20:0) were found to have no inhibitory effect at investigated concentrations. However, the unsaturated esters (C20:1, C20:2, C20:3) displayed the inhibitory effect on CESs. Moreover, the double reciprocal plots indicated that alky esters inhibited the CESs in competitive and mixed competitive ways which were reversible. In addition, the result of most effective CESs inhibitor C8:1 from in situ experiment showed that C8:1 can inhibit the CESs-mediated intestinal metabolism and improve the drug absorption. And the inhibition had no time-dependent effect, compared with that of BNPP groups. The study suggested that alkyl esters can be served as effective and reversible CESs inhibitors, besides that their inhibitory potency/mechanism can be affected by their carbon chain length/double bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADF:

Adefovir

ADV:

Adefovir dipivoxil

BNPP:

Bis-p-nitrophenylphosphate

CESs:

Carboxylesterases

EE:

Ethyl (E)-hex-2-enoate

LDH:

Lactate dehydrogenase

Mono-ADV:

Mono-(POM) PMEA

References

  1. Bianca ML, Ronald TB (2006) Enzymes involved in the bioconversion of ester-based prodrugs. J Pharm Sci 95:1177–1195

    Article  Google Scholar 

  2. Heikinheimo P, Goldman A, Jeffries C, Ollis D (1999) Of barn owls and bankers: a lush variety of alpha/beta hydrolases. Struct Fold Des 7:R141–R146

    Article  CAS  Google Scholar 

  3. Tetsuo S, Masakiyo H (1998) The mammalian carboxylesterase: from molecules to functions. Annu Rev Pharmacol Toxicol 38:257–288

    Article  Google Scholar 

  4. Hyatt JL, Tsurkan L, Wierdl M, Edwards CC, Danks MK, Potter PM (2006) Intracellular inhibition of carboxylesterases by benzil: modulation of CPT-11 cytotoxicity. Mol Cancer Ther 5(9):2281–2288

    Article  CAS  PubMed  Google Scholar 

  5. Naesens L (1999) Inhibition of intestinal metabolism of the antiviral ester prodrug Bis(POC)-PMPA by nature identical fruit extracts as a strategy to enhance its oral absorption: in vitro study. Pharm Res 16(7):1035–1040

    Article  PubMed  Google Scholar 

  6. Van Gelder J, Deferme S, Naesens L, De Clercq E, van den Mooter G, Kinget R, Augustijns P (2002) Intestinal absorption enhancement of the ester prodrug tenofovir disoproxil fumarate through modulation of the biochemical barrier by defined ester mixtures. Drug Metab Dispos 30(8):924–930

    Article  PubMed  Google Scholar 

  7. Zhang J, Burnell JC, Dumaual N, Bosron WF (1999) Binding and hydrolysis of meperidine by human liver carboxylesterase hCE-1. J Pharmacol Exp Ther 290:314–318

    CAS  PubMed  Google Scholar 

  8. Wheelock CE, Shan G, Ottea J (2005) Overview of carboxylesterases and their role in the metabolism of insecticides. J Pestic Sci 30:75–83

    Article  CAS  Google Scholar 

  9. Redinbo MR, Potter PM (2005) Mammalian carboxylesterases: from drug targets to protein therapeutics. Drug Discov Today 10:313–325

    Article  CAS  PubMed  Google Scholar 

  10. Brandt E, Heymann E, Mentlein R (1980) Selective inhibition of rat liver carboxylesterases by various organophosphorus diesters in vivo and in vitro. Biochem Pharmacol 29:1927–1931

    Article  CAS  PubMed  Google Scholar 

  11. Harada T, Nakagawa Y, Wadkins RM, Potter PM, Wheelock CE (2009) Comparison of benzil and trifluoromethyl ketone (TFK)-mediated carboxylesterase inhibition using classical and 3D-quantitative structure–activity relationship analysis. Bioorg Med Chem 17:149–164

    Article  CAS  PubMed  Google Scholar 

  12. Hyatt JL, Moak T, Hatfield MJ, Tsurkan L, Edwards CC, Wierdl M, Danks MK, Wadkins RM, Potter PM (2007) Selective inhibition of carboxylesterases by isatins, indole-2, 3-diones. J Med Chem 50:1876–1885

    Article  CAS  PubMed  Google Scholar 

  13. Van Gelder J, Deferme S, Naesens L, De Clercq E, Van den Mooter G, Kinget R, Augustijns P (2000) Increased absorption of the antiviral ester prodrug tenofovir disoproxil in rat ileum by inhibiting its intestinal metabolism. Drug Metab Dispos 28:1394–1396

    PubMed  Google Scholar 

  14. Ping L, Patrick SC, Liang-Shang G, Suresh KB (2007) Esterase inhibition attribute of grapefruit juice leading to a new drug interaction. Drug Metab Dispos 35:1023–1031

    Article  Google Scholar 

  15. Ping L, Patrick SC, Liang-Shang G, Suresh KB (2007) Esterase inhibition by grapefruit juice flavonoids leading to a new drug interaction. Drug Metab Dispos 35:1203–1208

    Article  Google Scholar 

  16. Van Gelder J, Shafiee M, De Clercq E, Penninckx F, Van den Mooter G, Kinget R, Augustijns P (2000) Species-dependent and site-specific intestinal metabolism of ester prodrugs. Int J Pharm 205:93–100

    Article  PubMed  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  18. Xiuhua R, Xinliang M, Lei C, Kewen X, Luqin S, Jun Q, Aaron DS, Gao L (2009) Nonionic surfactants are strong inhibitors of cytochrome P4503A biotransformation activity in vitro and in vivo. Eur J Pharm Sci 36:401–411

    Article  Google Scholar 

  19. Kelsey JA, Bayles KW, Shafii B, McGuire MA (2006) Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Lipids 41:951–961

    Article  CAS  PubMed  Google Scholar 

  20. Du ZY, Demizieux L, Degrace P, Gresti J, Mointrot B, Liu YJ, Tian LX, Cao JM, Clouet P (2004) Alteration of 20:5n-3 and 22:6n-3 fat contents and liver peroxisomal activities in fenofibrate-treated rainbow trout. Lipids 39:849–855

    Article  CAS  PubMed  Google Scholar 

  21. Molina AJ, Prieto JG, Merino G, Mendoza G, Real R, Pulido MM, Alvarez AI (2007) Effects of ischemia–reperfusion on the absorption and esterase metabolism of diltiazem in rat intestine. Life Sci 80:397–407

    Article  CAS  PubMed  Google Scholar 

  22. Annaert P, Tukker JT, Van Gelder J, Naesens L, De Clercq E, Van den Mooter G, Kinget R, Augustijns P (2000) In vitro, ex vivo and in situ intestinal absorption characteristics of the antiviral ester prodrug adefovir dipivoxil. J Pharm Sci 89:1054–1062

    Article  CAS  PubMed  Google Scholar 

  23. Annaert P, Kinget R, Naesens L, De Clercq E, Augustijns P (1997) Transport, uptake, and metabolism of the bis(pivaloyloxymethyl)-ester prodrug of 9-(2-phosphonylmethoxyethyl)adenine in an in vitro cell culture system of the intestinal mucosa (Caco-2). Pharm Res 14:492–496

    Article  CAS  PubMed  Google Scholar 

  24. Li yan Z, Xiao yan C, Yong Z, Han yu Y, Da fang Z (2003) Determination of adefovir in monkey plasma by liquid chromatography-tandem mass spectrometry. Acta Pharm Sin 38:120–123

    Google Scholar 

  25. Tseng SJ, Hsu JP (1990) A comparison of the parameter estimating procedures for the Michaelis–Menten model. J Theor Biol 145(4):457–464

    Article  CAS  PubMed  Google Scholar 

  26. Michael L (1999) Fatty acid ethyl esters: nonoxidative ethanol metabolites with emerging biological and clinical significance. Lipids 34:281–285

    Article  Google Scholar 

  27. Porter CJH, Pouton CW (2008) Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Delivery Rev 60:625–637

    Article  Google Scholar 

  28. Durrer A, Wernly-Chung GN, Boss G, Testa B (1992) Enzymic hydrolysis of nicotinate esters: comparison between plasma and liver catalysis. Xenobiotica 22:273–282

    Article  CAS  PubMed  Google Scholar 

  29. Foroutan SM, Watson DG (1999) The in vitro evaluation of polyethylene glycol esters of hydrocortisone 21-succinate as ocular prodrugs. Int J Pharm (Amst) 182:79–92

    CAS  Google Scholar 

  30. Teruko I, Megumi T, Mayumi S, Masakiyo H, Kan C (2006) Substrate specificity of carboxylesterase isozymes and their contribution to hydrolase activity in human liver and small intestine. Drug Metab Dispos 34:1734–1741

    Article  Google Scholar 

  31. Fleming CD, Bencharit S, Edwards CC, Hyatt JL, Tsurkan L, Bai F, Fraga C, Morton CL, Howard-Williams EL, Potter PM, Redinbo MR (2005) Structural insights into drug processing by human carboxylesterase 1: tamoxifen, mevastatin, and inhibition by benzil. J Mol Biol 352:165–177

    Article  CAS  PubMed  Google Scholar 

  32. Gibson GG, Cinti DL, Sligar SG, Schenkman JB (1980) The effect of microsomal fatty acids and other lipids on the spin state of partially purified cytochrome P-450. J Biol Chem 255(5):1867–1873

    CAS  PubMed  Google Scholar 

  33. Berg J, Tymoczko JL, Stryer L (2002) Biochemistry. W.H. Freeman & Co., New York

  34. White KN, Eggermont J, Hope DB (1987) Effect of the carboxylesterase inhibitor bis-(4-nitrophenyl)phosphate in vivo on aspirin hydrolase and carboxylesterase activities at first-pass sites of metabolism in the guinea pig. Biochem Pharmacol 36:2687–2688

    Article  CAS  PubMed  Google Scholar 

  35. Mentlein R, Rix-Matzen H, Heymann E (1988) Subcellular localization of non-specific carboxylesterases, acylcarnitine hydrolase, monoacylglycerol lipase and palmitoyl-CoA hydrolase in rat liver. Biochim Biophys Acta 964:319–328

    CAS  PubMed  Google Scholar 

  36. Masaki K, Hashimoto M, Imai T (2007) Intestinal first-pass metabolism via carboxylesterase in rat jejunum and ileum. Drug Metab Dispos 35:1089–1095

    Article  CAS  PubMed  Google Scholar 

  37. Krisch K (1971) Carboxylic ester hydrolases. In: Boyer PD (ed) The enzymes. Academic Press, New York

  38. Wu SJ, Robinson JR (1999) Transcellular and lipophilic complex-enhanced intestinal absorption of human growth hormone. Pharm Res 16:1266–1272

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mrs Dan Li for help on calculating K i/K i′ values by offering the GraphPad Prism 4.00 (GraphPad Software, San Diego California, USA). This work was supported by the National Natural Sciences Foundation of China (No. 30701054) and National Science & Technology Major Project “Key New Drug Creation and Manufacturing Program” (No. 2009ZX09301-001). This work was also supported in part by the National Basic Research Program of China (No. 2009CB930300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Gan.

About this article

Cite this article

Li, P., Zhu, Cl., Zhang, Xx. et al. Reversible Inhibitory Effects of Saturated and Unsaturated Alkyl Esters on the Carboxylesterases Activity in Rat Intestine. Lipids 45, 603–612 (2010). https://doi.org/10.1007/s11745-010-3434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3434-z

Keywords

Navigation