Skip to main content
Log in

DGAT1, DGAT2 and PDAT Expression in Seeds and Other Tissues of Epoxy and Hydroxy Fatty Acid Accumulating Plants

  • Original Article
  • Published:
Lipids

Abstract

Triacylglycerol (TAG) is the main storage lipid in plants. Acyl-CoA: diacylglycerol acyltransferase (DGAT1 and DGAT2) and phospholipid: diacylglycerol acyltransferase (PDAT) can catalyze TAG synthesis. It is unclear how these three independent genes are regulated in developing seeds, and particularly if they have specific functions in the high accumulation of unusual fatty acids in seed oil. The expression patterns of DGAT1, DGAT2 and a PDAT in relation to the accumulation of oil and epoxy and hydroxy fatty acids in developing seeds of the plant species Vernonia galamensis, Euphorbia lagascae, Stokesia laevis and castor that accumulate high levels of these fatty acids in comparison with soybean and Arabidopsis were investigated. The expression patterns of DGAT1, DGAT2 and the PDAT are consistent with all three enzymes playing a role in the high epoxy or hydroxy fatty acid accumulation in developing seeds of these plants. PDAT and DGAT2 transcript levels are present at much higher levels in developing seeds of epoxy and hydroxy fatty acid accumulating plants than in soybeans or Arabidopsis. Moreover, PDAT, DGAT1 and DGAT2 are found to be expressed in many different plant tissues, suggesting that these enzymes may have other roles in addition to seed oil accumulation. DGAT1 appears to be a major enzyme for seed oil accumulation at least in Arabidopsis and soybeans. For the epoxy and hydroxy fatty acid accumulating plants, DGAT2 and PDAT also show expression patterns consistent with a role in the selective accumulation of these unusual fatty acids in seed oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AtDGAT1/2:

Arabidopsis thaliana DGAT1/2

AtPDAT:

Arabidopsis thaliana PDAT

BHT:

Butylated hydroxytoluene or butylhydroxytoluene

DAF:

Days after flowering

DAG:

sn-1,2-diacylglycerol

DGAT1:

Type 1 acyl-CoA: diacylglycerol acyltransferase

DGAT2:

Type 2 acyl-CoA: diacylglycerol acyltransferase

ER:

Endoplasmic reticulum

LCAT:

Lecithin: cholesterol acyltransferase

PDAT:

Phospholipid: diacylglycerol acyltransferase

RcDGAT1/2:

Ricinus communis DGAT1/2

RcPDAT1A:

Ricinus communis PDAT1A

ScPDAT:

Saccharomyces cerevisiae PDAT

TAG:

Triacylglycerol

References

  1. Bewley J, Black M (1994) Seeds: Physiology of Development and Germination, 2nd edn. Plenum, New York

    Google Scholar 

  2. van de Loo FJ, Fox BG, Somerville C (1993) Unusual fatty acids. In: Moore JTS (ed) Lipid metabolism in plants. CRC, Boca Raton, pp 91–126

    Google Scholar 

  3. Perdue RE (1989) Vernonia: bursting with potential. Agric Eng 70:11–13

    Google Scholar 

  4. Pascual MJ, Correal E (1992) Mutation studies of an oilseed spurge rich in vernolic acid. Crop Sci 32:95–98

    Article  Google Scholar 

  5. Bafor M, Smith MA, Jonsson L, Stobart K, Stymme S (1993) Biosynthesis of vernoleate (cis-12-epoxyoctadeca-cis-9-enoate) in microsomal preparations from developing endosperm of Euphorbia lagascae. Arch Biochem Biophys 303:145–151

    Article  CAS  PubMed  Google Scholar 

  6. Thompson AE, Dierig DA, Kleiman R (1994) Variation in Vernonia galamensis flowering characteristics, seed oil and vernolic acid contents. Ind Crop Prod 3:175–183

    Article  CAS  Google Scholar 

  7. Huang AHC (1992) Oil bodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol 43:177–200

    Article  CAS  Google Scholar 

  8. Ohlrogge JB, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  CAS  PubMed  Google Scholar 

  9. Ichihara K, Takahashi T, Fujii S (1988) Diacylglycerol acyltransferase in maturing safflower seeds: its influences on the fatty acid composition of triacylglycerol and on the rate of triacylglycerol synthesis. Biochim Biophys Acta 958:125–129

    CAS  PubMed  Google Scholar 

  10. Perry H, Harwood J (1993) Changes in the lipid content of developing seeds of Brassica napus. Phytochemistry 32:1411–1415

    Article  CAS  Google Scholar 

  11. Cases S, Smith SJ, Zheng Y, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV Jr (1998) Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA 95:13018–13023

    Article  CAS  PubMed  Google Scholar 

  12. Routaboul J-M, Benning C, Bechtold N, Caboche M, Lepiniec L (1999) The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. Plant Physiol Biochem 37:831–840

    Article  CAS  PubMed  Google Scholar 

  13. Zou J, Wei Y, Taylor DC (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyl transferase gene. Plant J 19:645–654

    Article  CAS  PubMed  Google Scholar 

  14. Oelkers P, Behar A, Cromley D, Billheimer J, Sturley S (1998) Characterization of two human genes encoding acyl coenzyme A: cholesterol acyltransferase-related enzymes. J Biol Chem 273:26765–26771

    Article  CAS  PubMed  Google Scholar 

  15. Saha S, Enugutti B, Rajakumari S, Rajasekharan R (2006) Cytosolic triacylglycerol biosynthetic pathway in oilseeds: molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol 141:1533–1543

    Article  CAS  PubMed  Google Scholar 

  16. Hobbs DH, Lu C, Hills MJ (1999) Cloning of a cDNA encoding diacylglycerol acyltransferase from Arabidopsis thaliana and its functional expression. FEBS Lett 452:145–149

    Article  CAS  PubMed  Google Scholar 

  17. Bouvier-Nave P, Benvenise P, Oelkers P, Sturley S, Schaller H (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur J Biochem 267:85–96

    Article  CAS  PubMed  Google Scholar 

  18. Nykiforuk CL, Furukawa-Stoffer TL, Huff PW, Sarna M, Laroche A, Moloney MM, Weselake RJ (2002) Characterization of cDNAs encoding diacylglycerol acyltransferase from cultures of Brassica napus and sucrose-mediated induction of enzyme biosynthesis. Biochimica Biophysica Acta Mol Cell Biol Lipid 1580:95–109

    Article  CAS  Google Scholar 

  19. Beisson F, Koo AJK, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism: a census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132: 681–97 (updated version at http://www.plantbiology.msn/lipids/genesurvey/)

    Google Scholar 

  20. Dahlqvist A, Ståhl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492

    Article  CAS  PubMed  Google Scholar 

  21. Oelkers P, Tinkelenberg A, Erdeniz N, Cromley D, Billheimer JT, Sturley SL (2000) A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast. J Biol Chem 275:15609–15612

    Article  CAS  PubMed  Google Scholar 

  22. Ståhl U, Carlsson A, Lenman M, Dahlqvist A, Huang B, Bana W, Bana A, Stymne S (2004) Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol 135:1324–1335

    Article  PubMed  Google Scholar 

  23. Mhaske V, Beldjilali K, Ohlrogge J, Pollard M (2005) Isolation and characterization of an Arabidopsis thaliana knockout line for phospholipid: diacylglycerol transacylase gene (At5g13640). Plant Physiol Biochem 43:413–417

    CAS  PubMed  Google Scholar 

  24. Kroon JTM, Wei W, Simon WJ, Slabas AR (2006) Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry 67:2541–2549

    Article  CAS  PubMed  Google Scholar 

  25. Shockey JM, Gidda SK, Chapital DC, Kuan J-C, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18:2294–2313

    Article  CAS  PubMed  Google Scholar 

  26. Burgal J, Shockey J, Lu C, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J 6:819–831

    Article  CAS  PubMed  Google Scholar 

  27. Verdier J, Thompson RD (2008) Transcriptional regulation of storage protein synthesis during dicotyledon seed filling. Plant Cell Physiol 49:1263–1271

    Article  CAS  PubMed  Google Scholar 

  28. Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB (2007) Using genomics to study legume seed development. Plant Physiol 144:562–574

    Article  CAS  PubMed  Google Scholar 

  29. Goldberg RB, de Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614

    Article  CAS  PubMed  Google Scholar 

  30. Dahmer ML, Hildebrand DF, Collins GB (1992) Comparative protein accumulation patterns in soybean somatic and zygotic embryos. In Vitro Cell Dev Biol Plant 28P:106–114

    CAS  Google Scholar 

  31. Lardizabal KD, Mai JT, Wagner NW, Wyrick A, Voelker T, Hawkins DJ (2001) DGAT2 Is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect sells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. J Biol Chem 276:38862–38869

    Article  CAS  PubMed  Google Scholar 

  32. Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, Voelker T, Farese RV Jr (2001) Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem 276:38870–38876

    Article  CAS  PubMed  Google Scholar 

  33. Hobbs D, Flintham J, Hills M (2004) Genetic control of storage oil synthesis in seeds of Arabidopsis. Plant Physiol 136:3341–3349

    Article  CAS  PubMed  Google Scholar 

  34. Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Taylor DC, Covello PS (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874

    Article  CAS  PubMed  Google Scholar 

  35. Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cdna encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874

    Article  CAS  PubMed  Google Scholar 

  36. Katavic V, Reed DW, Taylor DC, Giblin EM, Barton DL, Zou J, Mackenzie SL, Covello PS, Kunst L (1995) Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol 108:399–409

    Article  CAS  PubMed  Google Scholar 

  37. Lu C, Hills MJ (2002) Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid, sugars, and osmotic stress during germination and seedling development. Plant Physiol 129:1352–1358

    Article  CAS  PubMed  Google Scholar 

  38. He X, Turner C, Chen G, Lin J-T, Mckeon T (2004) Cloning and characterization of a cDNA encoding diacylglycerol acyltransferase from castor bean. Lipids 39:311–318

    Article  CAS  PubMed  Google Scholar 

  39. He X, Chen G, Lin J-T, Mckeon T (2004) Regulation of diacylglycerol acyltransferase in developing seeds of castor. Lipids 39:865–871

    Article  CAS  PubMed  Google Scholar 

  40. Tzen J, Cao Y, Laurent P, Ratnayake C, Huang A (1993) Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiol 101:267–276

    CAS  PubMed  Google Scholar 

  41. Weselake R, Pomeroy M, Furukawa T, Golden J, Little D, Laroche A (1993) Development profile of diacylglycerol acyltransferase in maturing seeds of oilseed rape and safflower and microspore-derived cultures of oilseed rape. Plant Physiol 102:565–571

    CAS  PubMed  Google Scholar 

  42. Zhang F-Y, Yang M-F, Xu Y-N (2005) Silencing of DGAT1 in tobacco causes a reduction in seed oil content. Plant Sci 169:689–694

    Article  CAS  Google Scholar 

  43. Privett OS, Dougherty KA, Erdahl WL, Stolyhwo A (1973) Studies on the lipid composition of developing soybean seeds. J Am Oil Chem Soc 50:516–520

    Article  CAS  PubMed  Google Scholar 

  44. Ohlrogge JB, Kuo T-m (1984) control of lipid synthesis during soybean seed development: enzymic and immunochemical assay of acyl carrier protein. Plant Physiol 74:622–625

    Article  CAS  PubMed  Google Scholar 

  45. Focks N, Benning C (1998) A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101

    Article  CAS  PubMed  Google Scholar 

  46. Lu CL, de Noyer SB, Hobbs DH, Kang J, Wen Y, Krachtus D, Hills MJ (2003) Expression pattern of diacylglycerol acyltransferase-1, an enzyme involved in triacylglycerol biosynthesis, in Arabidopsis thaliana. Plant Mol Biol 52:31–41

    Article  CAS  PubMed  Google Scholar 

  47. Millar A, Smith MA, Kunst L (2000) All fatty acids are not equal: discrimination in plant membrane lipids. Trends Plant Sci 5:95–101

    Article  CAS  PubMed  Google Scholar 

  48. Jaworski J, Cahoon EB (2003) Industrial oils from transgenic plants. Curr Opin Plant Biol 6:178–184

    Article  CAS  PubMed  Google Scholar 

  49. Hitz WD (1998) Fatty acid modifying enzymes from developing seeds of Vernonia galamensis. DuPont, USA

  50. Lee M, Lenman M, Banas A, Bafor M, Singh S, Schweizer M, Nilsson R, Liljenberg C, Dahlqvist A, Gummeson PO, Sjodahl S, Green A, Stymne S (1998) Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science 280:915–918

    Article  CAS  PubMed  Google Scholar 

  51. Cahoon EB, Ripp KG, Hall SE, McGonigle B (2002) Transgenic production of epoxy fatty acids by expression of a cytochrome P450 enzyme from Euphorbia lagascae seed. Plant Physiol 128:615–624

    Article  CAS  PubMed  Google Scholar 

  52. Hatanaka T, Shimizu R, Hildebrand D (2004) Expression of a Stokesia laevis epoxygenase gene. Phytochemistry 65:2189–2196

    Article  CAS  PubMed  Google Scholar 

  53. Eccleston V, Cranmer A, Voelker T, Ohlrogge J (1996) Medium-chain fatty acid biosynthesis and utilization in Brassica napus plants expressing lauroyl-acyl carrier protein thioesterase. Planta 198:46–53

    Article  CAS  Google Scholar 

  54. Kinney AJ (2001) Perspectives on the production of industrial oils in genetically engineered oilseeds. In: Kuo TM, Gardner HW (eds) Lipid biotechnology. Marcel Dekker, New York, pp 85–93

    Google Scholar 

  55. Singh S, Thomaeus S, Lee M, Stymne S, Green A (2001) Transgenic expression of a Δ12-epoxygenase gene in Arabidopsis seeds inhibits accumulation of linoleic acid. Planta 212:872–879

    Article  CAS  PubMed  Google Scholar 

  56. Eccleston VS, Ohlrogge JB (1998) Expression of lauroyl-acyl carrier protein thioesterase in Brassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and implies a set point for triacylglycerol accumulation. Plant Cell 10:613–622

    Article  CAS  PubMed  Google Scholar 

  57. Poirier Y, Ventre G, Calelari D (1999) Increased flow of fatty acids toward β-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiol 121:1366–1459

    Article  Google Scholar 

  58. Moire L, Rezzonico E, Goepfert S, Poirier Y (2004) Impact of unusual fatty acid synthesis on futile cycling through β-oxidation and on gene expression in transgenic plants. Plant Physiol 134:432–442

    Article  CAS  PubMed  Google Scholar 

  59. Oelkers P, Cromley D, Padamsee M, Billheimer J, Sturley S (2002) The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 277:8877–8881

    Article  CAS  PubMed  Google Scholar 

  60. Sandager L, Gustavsson M, Ståhl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277:6478–6482

    Article  CAS  PubMed  Google Scholar 

  61. Yu XX, Murray SF, Pandey SK, Booten SL, Bao D, Song X-Z, Kelly S, Chen S, McKay R, Monia BP, Bhanot S (2005) Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology 42:362–371

    Article  CAS  PubMed  Google Scholar 

  62. Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR, Elias|| PM, Farese RV (2004) Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem 279:11767–11776

    Article  CAS  PubMed  Google Scholar 

  63. Orland MD, Anwar K, Cromley D, Chu C-H, Chen L, Billheimer JT, Hussain MM, Cheng D (2005) Acyl coenzyme A dependent retinol esterification by acyl coenzyme A:diacylglycerol acyltransferase 1. Biochim Biophys Acta 1737:76–82

    CAS  PubMed  Google Scholar 

  64. Martin B, Wilson R (1983) Sub-cellular location of triacylglycerol synthesis in spinach leaves. Lipids 19:117–121

    Article  Google Scholar 

  65. Wilson R, Kwanyuen P (1986) Triacylglycerol synthesis and metabolism in germinating soybean cotyledons. Biochim Biophys Acta 877:231–237

    CAS  Google Scholar 

  66. Slocombe SP, Cornah J, Pinfield-Wells H, Soady K, Zhang Q, Gilday A, Dyer JM, Graham IA (2009) Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol J 7:694–703

    Article  CAS  PubMed  Google Scholar 

  67. Kaup MT, Froese CD, Thompson JE (2002) A role for diacylglycerol acyltransferase during leaf senescence. Plant Physiol 129:1616–1626

    Article  CAS  PubMed  Google Scholar 

  68. Turkish AR, Henneberry AL, Cromley D, Padamsee M, Oelkers P, Bazzi H, Christiano AM, Billheimer JT, Sturley SL (2005) Identification of two novel human acyl-coa wax alcohol acyltransferases: members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily. J Biol Chem 280:14755–14764

    Article  CAS  PubMed  Google Scholar 

  69. Yu K, Li R, Hatanaka T, Hildebrand D (2008) Cloning and functional analysis of two type 1 diacylglycerol acyltransferases from Vernonia galamensis. Phytochemistry 69:1119–1127

    Article  CAS  PubMed  Google Scholar 

  70. Browse J, Shockey J, Burgal J (2008) Enhancement of hydroxy fatty acid accumulation in oilseed plants. US Patent Application #20080282427

  71. Li R, Yu K, Hatanaka T, Hildebrand DF (2010) Vernonia DGATs increase accumulation of epoxy fatty acids in oil. Plant Biotechnol J 8:184–195

    Google Scholar 

Download references

Acknowledgments

This research was supported by the United Soybean Board, Ashland Chemicals, the Kentucky Science and Engineering Foundation, the Consortium for Plant Biotechnology Research, and the Kentucky Soybean Promotion Board. We gratefully acknowledge John Johnson for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Hildebrand.

Additional information

R. Li and K. Yu contributed equally to this work.

About this article

Cite this article

Li, R., Yu, K. & Hildebrand, D.F. DGAT1, DGAT2 and PDAT Expression in Seeds and Other Tissues of Epoxy and Hydroxy Fatty Acid Accumulating Plants. Lipids 45, 145–157 (2010). https://doi.org/10.1007/s11745-010-3385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3385-4

Keywords

Navigation