Skip to main content
Log in

Possible Biosynthetic Pathways for all cis-3,6,9,12,15,19,22,25,28-Hentriacontanonaene in Bacteria

  • Original Article
  • Published:
Lipids

Abstract

A very long chain polyunsaturated hydrocarbon, hentriacontanonaene (C31:9), was detected in an eicosapentaenoic acid (EPA)-producing marine bacterium, which was isolated from the mid-latitude seashore of Hokkaido, Japan, and was tentatively identified as mesophilic Shewanella sp. strain osh08 from 16S rRNA gene sequencing. The geometry and position of the double bonds in this compound were determined physicochemically to be all cis at positions 3, 6, 9, 12, 15, 19, 22, 25, and 28. Although C31:9 was detected in all of the seven EPA- or/and docosahexaenoic acid-producing bacteria tested, an EPA-deficient mutant (strain IK-1Δ8) of one of these bacteria had no C31:9. Strain IK-1Δ8 had defects in the pfaD gene, one of the five pfa genes responsible for the biosynthesis of EPA. Although Escherichia coli DH5α does not produce EPA or DHA inherently, cells transformed with the pfa genes responsible for the biosynthesis of EPA and DHA produced EPA and DHA, respectively, but not C31:9. These results suggest that the Pfa protein complex is involved in the biosynthesis of C31:9 and that pfa genes must not be the only genes responsible for the formation of C31:9. In this report, we determined for the first time the molecular structure of the C31:9 and discuss the possible biosynthetic pathways of this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CI:

Chemical ionization

CI-GC/MS:

Chemical ionization–mass spectrometry

DHA:

Docosahexaenoic acid

EI:

Electron impact ionization

EI-GC/MS:

Electron impact ionization–mass spectrometry

EPA:

Eicosapentaenoic acid

FAME:

Fatty acid methyl ester

GC/MS:

Gas chromatography–mass spectrometry

GLC:

Gas–liquid chromatography

HPLC:

High-performance liquid chromatography

PUHC:

Polyunsaturated hydrocarbon

PUFA:

Polyunsaturated fatty acid

References

  1. Nichols DS, Nichols PD, McMeekin TA (1995) A new n-C31:9 polyene hydrocarbon from Antarctic bacteria. FEMS Microbiol Lett 125:281–285

    Article  CAS  Google Scholar 

  2. Tamaoka J, Yanagibayashi M, Kato C, Horikoshi K (1998) A polyunsaturated hydrocarbon hentriacontanonaene (C31H46) from a deep-sea bacterium strain DSS12. In: Atlantic Canada Society for Microbial Ecology and International Committee on Microbial Ecology (eds) Program & Abstracts. Eighth international symposium on microbial ecology, Halifax, p 319

  3. Okuyama H, Orikasa Y, Nishida T, Morita N (2007) Bacterial genes responsible for the biosynthesis of eicosapentaenoic and docosahexaenoic acids and their heterologous expression. Appl Environ Microbiol 73:665–670

    Article  CAS  PubMed  Google Scholar 

  4. Blumer M, Mullin MM, Guillard RRC (1970) A polyunsaturated hydrocarbon (3, 6, 9, 12, 15, 18-heneicosahexaene) in the marine food web. Marine Biol 6:226–235

    Article  CAS  Google Scholar 

  5. Lee RF, Loeblich AR III (1971) Distribution of 21:6 hydrocarbon and its relationship to 22:6 fatty acid in algae. Phytochemistry 10:593–602

    Article  CAS  Google Scholar 

  6. Kolattukudy PE, Croteau R, Brown L (1974) Structure and biosynthesis of cuticular lipids. Plant Physiol 53:670–677

    Article  Google Scholar 

  7. ZoBell CE (1946) Marine microbiology, a monograph on hydrobacteriology. Chronica Botanica Co., Waltham

    Google Scholar 

  8. Yumoto I, Kawasaki K, Iwata H, Matsuyama H, Okuyama H (1998) Assignment of Vibrio sp. strain ABE-1 to Colwellia maris sp. nov., a new psychrophilic bacterium. Int J Syst Bacteriol 48:1357–1362

    CAS  PubMed  Google Scholar 

  9. Satomi M, Oikawa H, Yano Y (2003) Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. Int J Syst Evol Microbiol 53:491–499

    Article  CAS  PubMed  Google Scholar 

  10. Hirota K, Nodasaka Y, Orikasa Y, Okuyama H, Yumoto I (2005) Shewanella pneumatophori sp. nov., eicosapentanoic-acid-producing marine bacterium isolated from pacific mackerel (Pneumatophorus japonicus) intestine. Int J Syst Evol Microbiol 55:2355–2359

    Article  CAS  PubMed  Google Scholar 

  11. Yumoto I, Yamazaki K, Hishinuma M, Nodasaka Y, Suemori A, Nakajima K, Inoue N, Kawasaki K (2001) Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355

    CAS  PubMed  Google Scholar 

  12. Yumoto I, Kusano T, Shingyo T, Nodasaka Y, Matsuyama H, Okuyama H (2001) Assignment of Pseudomonas sp. strain E-3 to Pseudomonas psychrophila sp. nov., a new facultatively psychrophilic bacterium. Extremophiles 5:343–349

    Article  CAS  PubMed  Google Scholar 

  13. Yumoto I, Iwata H, Sawabe T, Ueno K, Ichise N, Matsuyama H, Okuyama H, Kawasaki K (1999) Characterization of a facultatively psychrophilic bacterium, Vibrio rumoiensis sp. nov., that exhibits high catalase activity. Appl Environ Microbiol 65:67–72

    CAS  PubMed  Google Scholar 

  14. Wongsa P, Tanaka M, Ueno A, Hasanuzzaman M, Yumoto I, Okuyama H (2004) Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Curr Microbiol 49:415–422

    Article  CAS  PubMed  Google Scholar 

  15. Perveen Z, Ando H, Ueno A, Ito Y, Yamamoto M, Yamada Y, Takagi T, Kaneko T, Kogame K, Okuyama H (2006) Isolation and characterization of a novel thraustochytrid–like microorganism that efficiently produces docosahexaenoic acid. Biotechnol Lett 28:197–202

    Article  CAS  PubMed  Google Scholar 

  16. Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T (1997) Production of high yields of docosahexaenoic acid by Schizochytrium limacinum strain SR21. J Am Oil Chem 74:1431–1434

    Article  CAS  Google Scholar 

  17. Chapman D (1965) Infrared spectroscopy of lipids. 15th Annual summer program symposium on quantitative methodology in lipid research. Part II. J Am Oil Chem Soc 42:353–371

    Article  CAS  PubMed  Google Scholar 

  18. Park MO, Tanabe M, Hirata K, Miyamoto K (2001) Isolation and characterization of a bacterium that produces hydrocarbons extracellularly which a equivalent to light oil. Appl Microbiol Biotechnol 56:448–452

    Article  CAS  PubMed  Google Scholar 

  19. Ueda N, Ando S, Hayashi A, Yano I, Hayashi M (1974) Analysis and identification of lipids. In: The Japanese Biochemical Society (ed) Collection of articles on experiments in biochemistry, 1st series, 3. Chemistry of lipids. Tokyo Kagaku Dozin Co., Ltd., Tokyo, pp 75–178 (in Japanese)

  20. Sato D, Ando Y, Tsujimoto R, Kawasaki K (2001) Identification of novel nonmethylene-interrupted fatty acids, 7E, 13E-20:2, 7E, 13E, 17Z-20:3, 9E, 15E, 19Z-22:3, and 4Z, 9E, 15E, 19Z-22:4, in Ophiuroidea (brittle star) lipids. Lipids 36:1371–1375

    Article  CAS  PubMed  Google Scholar 

  21. Okuyama H, Sasaki S, Higashi S, Murata N (1990) A trans-unsaturated fatty acid in a psychrophilic bacterium, Vibrio sp. strain ABE-1. J Bacteriol 172:3515–3518

    CAS  PubMed  Google Scholar 

  22. Oldham NJ, Svatoš A (1999) Determination of the double bond position in functionalized monoenes by chemical ionization ion-trap mass spectrometry using acetonitrile as a reagent gas. Rapid Commun Mass Spectrom 13:331–336

    Article  CAS  Google Scholar 

  23. Moneti G, Pieraccini G, Dani F, Catinella S, Traldi P (1996) Acetonitrile as an effective reactant species for positive-ion chemical ionization of hydrocarbons by ion-trap mass spectrometry. Rapid Commun Mass Spectrom 10:167–170

    Article  CAS  Google Scholar 

  24. Moneti G, Pieraccini G, Dani F, Turillazzi S, Favretto D, Traldi P (1997) Ion-molecule reactions of ionic species from acetonitrile with unsaturated hydrocarbons for the identification of the double-bond position using an ion trap. J Mass Spectrom 32:1371–1373

    Article  Google Scholar 

  25. Orikasa Y, Nishida T, Hase A, Watanabe K, Morita N, Okuyama H (2006) A phosphopantetheinyl transferase gene responsible for biosynthesis of n-3 polyunsaturated fatty acids from Moritella marina strain MP-1. FEBS Lett 580:4423–4429

    Article  CAS  PubMed  Google Scholar 

  26. Shibahara A, Yamamoto K, Nakayama T, Kajimoto G (1985) Rapid determination of double bond positions in monounsaturated fatty acids by GC–MS and its application of fatty acid analysis. J Jpn Oil Chem Soc 34:618–625

    CAS  Google Scholar 

  27. Watanabe K, Ishikawa C, Yazawa K, Kondo K, Kawaguchi A (1996) Fatty acid and lipid composition of an eicosapentaenoic acid-producing marine bacterium. J Mar Biotechnol 4:104–112

    CAS  Google Scholar 

  28. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  29. Sambrook J, Russell DW (2001) Molecular Cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

  30. Ito H, Hosokawa R, Morikawa M, Okuyama H (2008) A turbine oil-degrading bacterial consortium from soils of oil fields and its characteristics. Int Biodeterior Biodegradation 61:223–232

    Article  CAS  Google Scholar 

  31. Wiegel J (1990) Temperature spans for growth: hypothesis and discussion. FEMS Microbiol Lett 75:155–169

    Google Scholar 

  32. Ivanova EP, Sawabe T, Gorshkova NM, Svetashev VI, Mikhailov VV, Hicolau DV, Christen R (2001) Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51:1027–1033

    CAS  PubMed  Google Scholar 

  33. Ivanova EP, Gorshkova NM, Bowman JP, Lysenko AM, Zhukova NV, Sergeev AF, Mikhailov VV, Nicolau DV (2004) Shewanella pacifica sp. nov., a polyunsaturated fatty acid-producing bacterium isolated from sea water. Int J Syst Evol Microbiol 54:1083–1087

    Article  CAS  PubMed  Google Scholar 

  34. Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sana H, Burghardt J, Stackebrandt E, Nelson KH (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 2:705–724

    Article  Google Scholar 

  35. Abboud R, Popa R, Souza-Egipsy V, Giometti CS, Tollaksen S, Mosher JJ, Findlay RH, Nealson KH (2005) Low-temperature growth of Shewanella oneidensis MR-1. Appl Environ Microbiol 71:811–816

    Article  CAS  PubMed  Google Scholar 

  36. Heidelberg J, Paulsen I, Nelson K, Gaidos E, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123

    Article  CAS  PubMed  Google Scholar 

  37. Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  CAS  PubMed  Google Scholar 

  38. Nishida T, Morita N, Yano Y, Orikasa Y, Okuyama H (2007) The antioxidative function of eicosapentaenoic acid in a marine bacterium, Shewanella marinintestina IK-1. FEBS Lett 581:4212–4216

    Article  CAS  PubMed  Google Scholar 

  39. Ootaki M, Morita N, Nishida T, Tanaka M, Hase A, Yano Y, Yamada A, Yu R, Watanabe K, Okuyama H (2003) Genes and pathways involved in biosynthesis of eicosapentaenoic and docosahexaenoic acids in bacteria. In: Murata N, Nishida I, Yamada M, Sekiya J, Okuyama H, Wada H (eds) Advanced Researches of Plant Lipids. Kluwer, Tokyo, pp 49–52

    Google Scholar 

  40. Orikasa Y, Tanaka M, Sugihara S, Hori R, Nishida T, Ueno A, Morita N, Yano Y, Yamamoto K, Shibahara A, Hayashi H, Yamada Y, Yamada A, Yu R, Watanabe K, Okuyama H (2009) pfaB Products determine the molecular species produced in bacterial polyunsaturated fatty acid biosynthesis. FEMS Microbiol Lett 295:170–176

    Article  CAS  PubMed  Google Scholar 

  41. Albro PW, Dittmer JC (1969) Biochemistry of long-chain, nonisoprenoid hydrocarbons. III. Metabolic relation of long-chain fatty acids and hydrocarbons and other aspects of hydrocarbon metabolism in Sarcina lutea. Biochemistry 8:1913–1918

    Article  CAS  PubMed  Google Scholar 

  42. Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014

    Article  CAS  Google Scholar 

  43. Albro PW, Dittmer JC (1969) Biochemistry of long-chain, nonisoprenoid hydrocarbons. IV. Characteristics of synthesis by a cell-free preparation of Sarcina lutea. Biochemistry 8:3317–3324

    Article  CAS  PubMed  Google Scholar 

  44. Orikasa Y (2007) Molecular biological and biochemical studies on microbial genes responsible for the biosynthesis of long chain n-3 polyunsaturated fatty acids. PhD thesis, Hokkaido University, Sapporo, Japan

Download references

Acknowledgments

The infrared analysis of C31:9 was carried out using the apparatus of the OPEN FACILITY, Hokkaido University Sousei Hall with extensive assistance by and discussion with Dr. Y. Matsuo. The authors would like to express their appreciation to Drs. K. Shimazu and K. Nakata of the Faculty of Environmental Earth Science, Hokkaido University for their discussions throughout the work. This work was partly supported by a grant from the National Institute of Polar Research and a Grant-in-Aid from Hokkaido Innovation through Nanotechnology Support (HINTS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Okuyama.

About this article

Cite this article

Sugihara, S., Hori, R., Nakanowatari, H. et al. Possible Biosynthetic Pathways for all cis-3,6,9,12,15,19,22,25,28-Hentriacontanonaene in Bacteria. Lipids 45, 167–177 (2010). https://doi.org/10.1007/s11745-009-3380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3380-9

Keywords

Navigation