Skip to main content
Log in

Expression and Characterization of CYP51, the Ancient Sterol 14-demethylase Activity for Cytochromes P450 (CYP), in the White-Rot Fungus Phanerochaete chrysosporium

  • Original Article
  • Published:
Lipids

Abstract

Phanerochaete chrysosporium was the first fungal genome to exhibit more than one hundred cytochrome P450 (CYP) genes for a fungus within its genome (~150). It can metabolize lignocellulose and a wide range of environmental xenobiotics including many carcinogens and pollutants where cytochromes P450 may be involved. In the present paper we describe the heterologous expression and characterization of an ancestral CYP form, sterol 14α-demethylase (CYP51—EC1.14.13.70), from this organism. CYP51 was cloned from a cDNA library and expressed in both Escherichia coli, where it exhibited high affinity for azole antifungals, and Saccharomyces cerevisiae. Proof of function was observed by complementation of a conditional knock-down mutant of yeast CYP51. The CYP51 gene was found to be 1,956 bases long and contained 7 exons and 6 introns coding for a polypeptide 550 amino acids long (62 kDa). The CYP51 protein exhibited high affinity (k d 0.25–0.45 μM) for azole antifungal compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pszcynski A, Crawford RL (1995) Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnol Prog 11:368–379

    Article  Google Scholar 

  2. Juhasz A, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo(a)pyrene. Int Biodeter Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  3. Bumpus JA, Aust SD (1987) Biodegradation of DTT [1, 1, 1-trichloro-2, 2-bis(4-chlorophenyl)ethane] by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53:2001–2008

    PubMed  CAS  Google Scholar 

  4. Reddy CA (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6:320–328

    Article  CAS  Google Scholar 

  5. Masaphy S, Levanon D, Henis Y, Venkateswarlu K, Kelly SL (1996) Evidence for cytochrome P450 and P450-mediated benzo(a)pyrene hydroxylation in the white-rot fungus Phanerochaete chrysosporium. FEMS Lett 135:51–55

    Article  CAS  Google Scholar 

  6. Doddapaneni H, Chakraborty R, Yadav JS (2005) Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. BMC Genomics 6:92

    Article  PubMed  CAS  Google Scholar 

  7. Yadav JS, Loper JC (2000) Cytochrome P450 oxidoreductase gene and its differentially terminated cDNAs from the white-rot fungus Phanerochaete chrysosporium. Curr Genet 37:65–73

    Article  PubMed  CAS  Google Scholar 

  8. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  PubMed  CAS  Google Scholar 

  9. Kelly SL, Lamb DC, Jackson CJ, Warrilow AGS, Kelly DE (2003) The biodiversity of microbial cytochromes P450. Adv Microb Physiol 47:131–186

    Article  PubMed  CAS  Google Scholar 

  10. Doddapaneni V, Subramanian V, Yadav JS (2005) Physiological regulation, xenobiotic induction, and heterologous expression of P450 monooxygenase gene pc-3 (CYP63A3), a new member of the CYP63 gene cluster in the white-rot fungus Phanerochaete chrysosporium. Curr Microbiol 50:292–298

    Article  PubMed  CAS  Google Scholar 

  11. Doddapaneni H, Yadav JS (2004) Differential regulation and xenobiotic induction of tandem P450 monoxygenase genes pc-1 (CYP63A1) and pc-2 (CYP63A2) in the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 65:559–565

    Article  PubMed  CAS  Google Scholar 

  12. Matsuzaki F, Wariishi H (2005) Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 334:1184–1190

    Article  PubMed  CAS  Google Scholar 

  13. Gietz RD, Schiestl RH (1991) Application of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7:253–263

    Article  PubMed  CAS  Google Scholar 

  14. Arase M, Waterman MR, Kagawa N (2006) Purification and characterization of bovine steroid 21-hydroxylase (P450c21) efficiently expressed in Escherichia coli. Biochem Biophys Res Commun 344:400–405

    Article  PubMed  CAS  Google Scholar 

  15. Bellamine A, Mangla AT, Nes WD, Waterman MR (1999) Characterization and catalytic properties of the sterol 14 alpha-demethylase from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 96:8937–8942

    Article  PubMed  CAS  Google Scholar 

  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  17. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    PubMed  CAS  Google Scholar 

  18. Lamb DC, Kelly DE, Schunck WH, Shyadehi AZ, Akhtar M, Lowe DJ, Baldwin BC, Kelly SL (1997) The mutation T315A in Candida albicans sterol 14alpha-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. J Biol Chem 272:5682–5688

    Article  PubMed  CAS  Google Scholar 

  19. Lamb DC, Kelly DE, Venkateswarlu K, Manning NJ, Bligh HF, Schunck WH, Kelly SL (1999) Generation of a complete, soluble, and catalytically active sterol 14 alpha-demethylase–reductase complex. Biochemistry 38:8733–8738

    Article  PubMed  CAS  Google Scholar 

  20. Ouellet H, Podust LM, Ortiz de Montellano PR (2008) Mycobacterium tuberculosis CYP130: crystal structure, biophysical characterization, and interactions with antifungal azole drugs. J Biol Chem 283:5069–5080

    Article  PubMed  CAS  Google Scholar 

  21. Hegemann J (1998) Essential genes and gene families. EUROFAN, Interim Report 1, pp 33–34

  22. Groenveld P, Rolley N, Kell DB, Kelly SL, Kelly DE (2002) Metabolic control analysis and engineering of the yeast sterol biosynthetic pathway. Mol Biol Rep 29:27–29

    Article  Google Scholar 

  23. Revankar SG, Fu J, Rinaldi MG, Kelly SL, Kelly DE, Lamb DC, Keller SM, Wickes BL (2004) Cloning and characterization of the lanosterol 14α-demethylase (ERG11) gene in Cryptococcus neoformans. Biochem Biophys Res Commun 324:719–728

    Article  PubMed  CAS  Google Scholar 

  24. Kelly SL, Arnoldi A, Kelly DE (1993) Molecular genetic analysis of azole antifungal mode of action. Biochem Soc Trans 98:1034–1038

    Google Scholar 

  25. Lamb DC, Kelly DE, Waterman MR, Stromstedt M, Rozman D, Kelly SL (1999) Characteristics of the heterologously expressed human lanosterol 14α-demethylase (other names: P45014DM, CYP51, P45051) and inhibition of the purified human and Candida albicans CYP51 with azole antifungal agents. Yeast 15:755–763

    Article  PubMed  CAS  Google Scholar 

  26. Kelly SL, Lamb DC, Loeffler J, Einsele H, Kelly DE (1999) The G464S amino acid substitution in Candida albicans sterol 14α-demethylase causes fluconazole resistance in the clinic through reduced affinity. Biochem Biophys Res Commun 262:174–179

    Article  PubMed  CAS  Google Scholar 

  27. Kalb VF, Loper JC, Dey CR, Woods CW, Sutter TR (1986) Isolation of a cytochrome P450 structural gene from Saccharomyces cerevisiae. Gene 45:237–245

    Article  PubMed  CAS  Google Scholar 

  28. Kalb VF, Woods CW, Turi TG, Dey CR, Sutter TR, Loper JC (1987) Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA 6:529–537

    Article  PubMed  CAS  Google Scholar 

  29. Lamb DC, Kelly DE, Manning NJ, Hollomon DW, Kelly SL (1998) Expression, purification, reconstitution and inhibition of Ustilago maydis sterol 14α-demethylase (CYP51; P450DM). FEMS Microbiol Lett 169:369–373

    PubMed  CAS  Google Scholar 

  30. Podust LM, Poulos TL, Waterman MR (2001) Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci USA 98:3068–3073

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Biotechnology and Biological Science Research Council of the UK for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Kelly.

Additional information

P. chrysosporium CYP51 Accession Number: GenBank FJ174578.

About this article

Cite this article

Warrilow, A., Ugochukwu, C., Lamb, D. et al. Expression and Characterization of CYP51, the Ancient Sterol 14-demethylase Activity for Cytochromes P450 (CYP), in the White-Rot Fungus Phanerochaete chrysosporium . Lipids 43, 1143–1153 (2008). https://doi.org/10.1007/s11745-008-3239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3239-5

Keywords

Navigation