Skip to main content
Log in

Glucose-Sensitive Liposomes Incorporating Hydrophobically Modified Glucose Oxidase

  • Original Article
  • Published:
Lipids

Abstract

Glucose-sensitive liposomes were prepared by incorporating hydrophobically modified glucose oxidase (EC 1.1.3.4.) into the liposomal bilayer of dioleoylphosphatidylethanolamine and cholesteryl hemisuccinate. For the release test, calcein, a fluorescence marker, was entrapped in the liposomes. The liposomes were stable under neutral conditions in terms of calcein release but an extensive release was observed under acidic conditions. In the experiment of glucose concentration-dependent calcein release, no release was observed for 180 min when the suspension of liposome was free of glucose. With a glucose concentration of 50 mg/dL, no appreciable amount of calcein was released for the first 20 min, and then the release rate was accelerated. At 200 mg/dL glucose concentration which is diagnostic and indicative for insulin-dependent diabetes, the lag time of calcein release became shorter and a faster response was obtained. When glucose concentration further increased to 400 mg/dL, the calcein release rate and the degree of release in 180 min were almost the same as the values when the glucose concentration was 200 mg/dL. The glucose concentration-dependent release is due to pH change, since the suspension of liposomes became acidic during the release experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Choi M-J, Han H-S, Kim H (1992) pH-sensitive liposomes containing polymerized phosphatidylethanolamine and fatty acid. J Biochem 112:694–699

    PubMed  CAS  Google Scholar 

  2. Maeda M, Kumano A, Tirrell DA (1988) H+-Induced release of contents of phosphatidylcholine vesicles bearing surface bound polyelectrolyte chains. J Am Chem Soc 110:7455–7459

    Article  CAS  Google Scholar 

  3. Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R (1978) Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202:1290–1293

    Article  PubMed  CAS  Google Scholar 

  4. Weinstein JN, Magin RL, Cysyl RL, Zaharko DS (1980) Treatment of solid L1210 murine tumors with local hyperthermia and temperature-sensitive liposomes containing methotrexate. Cancer Res 40:1388–1395

    PubMed  CAS  Google Scholar 

  5. Hayashi H, Kono K, Takagishi T (1996) Temperature-controlled release property of phospholipid vesicles bearing a thermo-sensitive polymer. Biochim Biophys Acta 1280:127–134

    Article  PubMed  Google Scholar 

  6. Kim J-C, Bae SK, Kim J-D (1997) Temperature-sensitivity of liposomal lipid bilayers mixed with poly(N-isopropylacrylamide-co-acrylic acid). J Biochem 121:15–19

    PubMed  CAS  Google Scholar 

  7. Kono K, Nakai R, Morimoto K, Takagishi T (1999) Thermosensitive polymer-modified liposomes that release contents around physiological temperature. Biochim Biophys Acta 1416:239–250

    Article  PubMed  CAS  Google Scholar 

  8. Kono K, Henmi A, Yamashita H, Hayashi H, Takagishi T (1999) Improvement of temperature-sensitivity of poly(N-iso-propylacrylamide)-modified liposomes. J Control Release 59:63–75

    Article  PubMed  CAS  Google Scholar 

  9. Chu L-Y, Liang Y-J, Chen W-M, Ju X-J, Wang H-D (2004) Preparation of glucose-sensitive microcapsules with a porous membrane and functional gates. Colloid Surf B-Biointerfaces 37:9–14

    Article  CAS  Google Scholar 

  10. Horbett T, Kost J, Ratner B (1983) Swelling behavior of glucose sensitive membranes. Am Chem Soc. Div Polym Chem 24:34–35

    CAS  Google Scholar 

  11. Horbett T, Kost J, Ratner B (1984) Swelling behavior of glucose sensitive membranes. In: Shakaby S, Hoffman A, Horbett T, Ratner B (eds) Polymers as Biomaterials. Plenum, New York

    Google Scholar 

  12. Kost J, Horbett T, Ratner B, Singh M (1985) Glucose sensitive membranes containing glucose oxidase: activity, swelling and permeability studies. J Biomed Mater Res 19:1117–1133

    Article  PubMed  CAS  Google Scholar 

  13. Albin G, Horbett T, Ratner B (1985) Glucose sensitive membranes for controlled delivery of insulin: insulin transport studies. J Control Release 2:153–164

    Article  CAS  Google Scholar 

  14. Albin G, Horbett T, Miller S, Ricker N (1987) Theoretical and experimental studies of glucose sensitive membranes. J Control Release 6:267–291

    Article  CAS  Google Scholar 

  15. Albin G, Horbett T, Ratner B (1990) Glucose-sensitive membranes for controlled release of insulin. In: Kost J (ed) Pulsed and self-regulated drug delivery. CRC Press, Boca Raton

    Google Scholar 

  16. Kim SW, Jeong SY, Sato S, McRea JC, Feijen F (1984) Self regulating insulin delivery system-a chemical approach. In: Anderson JM, Kim SW (eds) Recent advances in drug delivery systems. Plenum, New York

    Google Scholar 

  17. Jeong SY, Kim SW, Eenink MJD, Feijen J (1984) Self-regulating insulin delivery systems I. Synthesis and characterization of glycosylated insulin. J Control Release 1:57–66

    Article  CAS  Google Scholar 

  18. Sato S, Jeong SY, McRea JC, Kim SW (1984) Self-regulating insulin delivery systems II. In vitro studies. J Control Release 1:67–77

    Article  CAS  Google Scholar 

  19. Jeong SY, Kim SW, Holemberg D, McRea JC (1985) Self-regulating insulin delivery systems III. In vivo studies. J Control Release 2:143–152

    Article  CAS  Google Scholar 

  20. Sato S, Jeong SY, McRea JC, Kim SW (1984) Glucose stimulated insulin delivery system. Pure Appl Chem 56:1323–1328

    Article  CAS  Google Scholar 

  21. Seminoff L, Kim SW (1990) A self-regulating insulin delivery system based on competitive binding of glucose and glycosylated insulin. In: Kost J (ed) Pulsed and self-regulated drug delivery. CRC Press, Boca Raton

    Google Scholar 

  22. New RRC (1990) Introduction. In: New RRC (ed) Liposomes: a practical approach. IRL Press, New York

    Google Scholar 

  23. Lee EO, Kim JG, Kim J-D (1992) Induction of vesicle-to-micelle transition by bile salts for DOPE vesicles incorporating immunoglobulin G. J Biochem 112:671–676

    PubMed  CAS  Google Scholar 

  24. Huang A, Tsao YS, Kennel SJ, Huang L (1983) Characterization of antibody covalently coupled to liposomes. Biochim Biophys Acta 716:140–150

    Google Scholar 

  25. Taraschi TF, van der Steen AT, de Kruijff B, Tellier C, Verkleij AJ (1982) Lectin-receptor interactions in liposomes: Evidence that binding of wheat germ agglutinin to glycoprotein-phosphatidylethanolamine vesicles induced nonbilayer structure. Biochemistry 21:5756–5764

    Article  PubMed  CAS  Google Scholar 

  26. New RRC, Black CDV, Parker RJ, Puri A, Scherphof GL (1990) Liposomes in biological systems. In: New RRC (ed) Liposomes: a practical approach. IRL Press, New York

    Google Scholar 

  27. Schubert R, Peschka-Suess R (2003) pH-Sensitive liposomes. In: Torchilin VP, Weissig V (eds) Liposomes second edition: a practical approach. Oxford University Press, New York

    Google Scholar 

  28. Straubinger RM, Du”zgu”nes N, Papahadjopoulos D (1984) pH-Sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules. FEBS Lett 179:148–154

    Article  Google Scholar 

  29. Liu D, Huang L (1990) pH-sensitive, plasma-stable liposomes with relatively prolonged residence in circulation. Biochim Biophys Acta 1022:348–354

    Article  PubMed  CAS  Google Scholar 

  30. Litzinger DC, Huang L (1992) Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. Biochim Biophys Acta 1113:201–227

    PubMed  CAS  Google Scholar 

  31. Ellens H, Bentz J, Szoka FC (1984) pH-Induced destabilization of phosphatidyl ethanolamine-containing liposomes: role of bilayer contact. Biochemistry 23:1532–1538

    Article  PubMed  CAS  Google Scholar 

  32. Cullis PR, Kruijff BD (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559:399–420

    PubMed  CAS  Google Scholar 

  33. Van Bambeke F, Kerkhofs A, Schanck A, Remacle C, Sonveaux E, Tulkens PM, Mingeot-Leclercq MP (2000) Biophysical studies and intracellular destabilization of pH-sensitive liposomes. Lipids 35:213–223

    Article  PubMed  Google Scholar 

  34. Baszkin A, Boissonnade MM, Rosilio V, Kamyshny A, Magdassi S (1997) Adsorption of hydrophobized glucose oxidase at solution/air interface. J Colloid Interface Sci 190:313–317

    Article  PubMed  CAS  Google Scholar 

  35. Hermanson G (1996) Bioconjugate technigues. Academic Press, San Diego

    Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  37. Sudimack JJ, Guo W, Tjarks W, Lee RJ (2002) A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim Biophys Acta 1564:31–37

    Article  PubMed  CAS  Google Scholar 

  38. Kim M-J, Lee HJ, Lee I-A, Kim I-Y, Lim S-K, Cho H-A, Kim J-S (2008) Preparation of pH-sensitive, long-circulating and EGFR-targeted immunoliposomes. Arch Pharm Res 31:539–546

    Article  PubMed  CAS  Google Scholar 

  39. Ishida T, Okada Y, Kobayashi T, Kiwada H (2006) Development of pH-sensitive liposomes that efficiently retain encapsulated doxorubicin (DXR) in blood. Int J Pharm 309:94–100

    Article  PubMed  CAS  Google Scholar 

  40. Traitel T, Cohen Y, Kost J (2000) Characterization of glucose-sensitive insulin release systems in simulated in vivo conditions. Biomaterials 21:1679–1687

    Article  PubMed  CAS  Google Scholar 

  41. Ding W-X, Qi X-R, Li P, Maitani Y, Nagai T (2005) Cholesteryl hemisuccinate as a membrane stabilizer in dipalmitoylphosphatidylcholine liposomes containing saikosaponin-d. Int J Pharm 300:38–47

    Article  PubMed  CAS  Google Scholar 

  42. Tiina M, Sandholm M (1989) Antibacterial effect of the glucose oxidase-glucose system on food-poisoning organisms. Int J Food Microbiol 8:165–174

    Article  PubMed  CAS  Google Scholar 

  43. Hussin M, Abdul-Hamid A, Mohamad S, Saari N, Ismail M, Bejo MH (2007) Protective effect of Centella asiatica extract and powder on oxidative stress in rats. Food Chem 100:535–541

    Article  CAS  Google Scholar 

  44. Sisak C, Csanádi Z, Rónay E, Szajáni B (2006) Elimination of glucose in egg white using immobilized glucose oxidase. Enzyme Microb Tech 39:1002–1007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (20070101033021) from a Special Agricultural Research Program, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Chul Kim.

About this article

Cite this article

Jo, SM., Lee, H.Y. & Kim, JC. Glucose-Sensitive Liposomes Incorporating Hydrophobically Modified Glucose Oxidase. Lipids 43, 937–943 (2008). https://doi.org/10.1007/s11745-008-3223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3223-0

Keywords

Navigation