Skip to main content
Log in

Quantification of Pentafluorobenzyl Oxime Derivatives of Long Chain Aldehydes by GC–MS Analysis

  • Methods
  • Published:
Lipids

Abstract

Negative ion mass spectrometric techniques, for compounds having good ionization properties, such as pentafluorobenzyl derivatives, are believed to be more sensitive than positive ion methods. Preparation of PFB oximes of fatty aldehydes from crude lipid extracts is problematic due to the release of free aldehydes from plasmalogens during derivatization. Accordingly, in these studies plasmalogens were removed by silicic acid column chromatography prior to pentafluorobenzyl derivatization. This simple purification step to remove plasmalogens is shown to facilitate the quantification of long-chain aldehydes by analysis of their pentafluorobenzyl oxime derivatives utilizing gas chromatography–mass spectrometry in the negative ion chemical ionization mode. The limit of detection for long chain fatty aldehydes using this method is 0.5 pmol and it is linear over two orders of magnitude. Silicic acid column chromatography followed by electrospray ionization mass spectrometry demonstrated that plasmalogens were removed (the detection limit for this analyses was ≤0.3 pmol). Furthermore, we have exploited the utility and sensitivity of this method to identify increases in hexadecanal and octadecanal in 3-amino-1,2,4-triazole treated human neutrophils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAG :

1-O-alk-1′-enyl-2-acyl-sn-glycerol

di-16:0 GPC:

1,2-Dihexadecanoyl-sn-glycero-3-phosphocholine

di-20:0 GPC:

1,2-Diicosanoyl-sn-glycero-3-phosphocholine

16:0-18:1 pPC:

1-O-hexadec-1′-enyl-2-octadec-9′-enoyl-sn-glycero-3-phosphocholine

2-ClHDA:

2-Chlorohexadecanal

ATZ:

3-Amino-1,2,4-triazole

DAG:

Diacylglycerol

DI-ESI-MS/MS:

Direct-infusion electrospray ionization tandem mass spectrometry

GC–MS:

Gas chromatography–mass spectrometry

HCAEC:

Human coronary artery endothelial cells

HNE:

4-Hydroxynonenal

MDA:

Malondialdehyde

NICI:

Negative ion chemical ionization

18:0 SM:

N-octadecanoyl sphingosylphosphorylcholine

PFB:

Pentafluorobenzyl

PC:

Phosphatidylcholine

SIM:

Selected ion monitoring

TLC:

Thin layer chromatography

References

  1. O’Brien PJ, Siraki AG, Shangari N (2005) Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 35:609–662

    Article  PubMed  CAS  Google Scholar 

  2. Uchida K (2000) Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med 28:1685–1696

    Article  PubMed  CAS  Google Scholar 

  3. Esterbauer H, Jurgens G, Quehenberger O, Koller E (1987) Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res 28:495–509

    PubMed  CAS  Google Scholar 

  4. Porter NA, Caldwell SE, Mills KA (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277–290

    Article  PubMed  CAS  Google Scholar 

  5. Yin H, Porter NA (2005) New insights regarding the autoxidation of polyunsaturated fatty acids. Antioxid Redox Signal 7:170–184

    Article  PubMed  CAS  Google Scholar 

  6. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  PubMed  CAS  Google Scholar 

  7. Albert CJ, Crowley JR, Hsu FF, Thukkani AK, Ford DA (2001) Reactive chlorinating species produced by myeloperoxidase target the vinyl ether bond of plasmalogens: identification of 2-chlorohexadecanal. J Biol Chem 276:23733–23741

    Article  PubMed  CAS  Google Scholar 

  8. Brahmbhatt VV, Hsu FF, Kao JL, Frank EC, Ford DA (2007) Novel carbonyl and nitrile products from reactive chlorinating species attack of lysosphingolipid. Chem Phys Lipids 145:72–84

    Article  PubMed  CAS  Google Scholar 

  9. Thukkani AK, Hsu FF, Crowley JR, Wysolmerski RB, Albert CJ, Ford DA (2002) Reactive chlorinating species produced during neutrophil activation target tissue plasmalogens: production of the chemoattractant, 2-chlorohexadecanal. J Biol Chem 277:3842–3849

    Article  PubMed  CAS  Google Scholar 

  10. Marsche G, Heller R, Fauler G, Kovacevic A, Nuszkowski A, Graier W, Sattler W, Malle E (2004) 2-chlorohexadecanal derived from hypochlorite-modified high-density lipoprotein-associated plasmalogen is a natural inhibitor of endothelial nitric oxide biosynthesis. Arterioscler Thromb Vasc Biol 24:2302–2306

    Article  PubMed  CAS  Google Scholar 

  11. Kim SS, Gallaher DD, Csallany AS (1999) Lipophilic aldehydes and related carbonyl compounds in rat and human urine. Lipids 34:489–496

    Article  PubMed  Google Scholar 

  12. Csallany AS, Kim SS, Gallaher DD (2000) Response of urinary lipophilic aldehydes and related carbonyl compounds to factors that stimulate lipid peroxidation in vivo. Lipids 35:855–862

    Article  PubMed  CAS  Google Scholar 

  13. Hunt DF, Stafford GC, Crow FW, Russell JW (1976) Pulsed positive negative ion chemical ionization mass spectrometry. Anal Chem 48:2098–2104

    Article  CAS  Google Scholar 

  14. Kawai Y, Takeda S, Terao J (2007) Lipidomic analysis for lipid peroxidation-derived aldehydes using gas chromatography-mass spectrometry. Chem Res Toxicol 20:99–107

    Article  PubMed  CAS  Google Scholar 

  15. Hsu FF, Hazen SL, Giblin D, Turk J, Heinecke JW, Gross ML (1999) Mass spectrometric analysis of pentafluorobenzyl oxime derivative of reactive biological aldehydes. Int J Mass Spectr 187:795–812

    Article  Google Scholar 

  16. Morand OH, Zoeller RA, Raetz CR (1988) Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation. J Biol Chem 263:11597–11606

    PubMed  CAS  Google Scholar 

  17. Nagan N, Zoeller RA (2001) Plasmalogens: biosynthesis and functions. Prog Lipid Res 40:199–229

    Article  PubMed  CAS  Google Scholar 

  18. Hayashi H, Hara M (1997) 1-Alkenyl group of ethanolamine plasmalogen derives mainly from de novo-synthesized fatty alcohol within peroxisomes, but not extraperoxisomal fatty alcohol or fatty acid. J Biochem (Tokyo) 121:978–983

    CAS  Google Scholar 

  19. Dess DB, Martin JC (1983) Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J Org Chem 48:4155–4156

    Article  CAS  Google Scholar 

  20. Han XL, Zupan LA, Hazen SL, Gross RW (1992) Semisynthesis and purification of homogeneous plasmenylcholine molecular species. Anal Biochem 200:119–124

    Article  PubMed  CAS  Google Scholar 

  21. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  22. Zoeller RA, Lake AC, Nagan N, Gaposchkin DP, Legner MA, Lieberthal W (1999) Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether. Biochem J 338(Pt 3):769–776

    Article  PubMed  CAS  Google Scholar 

  23. Margoliash E, Novogrodsky A, Schejter A (1960) Irreversible reaction of 3-amino-1:2:4-triazole and related inhibitors with the protein of catalase. Biochem J 74:339–348

    PubMed  CAS  Google Scholar 

  24. Nauseef WM, Metcalf JA, Root RK (1983) Role of myeloperoxidase in the respiratory burst of human neutrophils. Blood 61:483–492

    PubMed  CAS  Google Scholar 

  25. Seppanen CM, Csallany AS (2001) Simultaneous determination of lipophilic aldehydes by high-performance liquid chromatography in vegetable oil. J Am Oil Chem Soc 78:1253–1260

    Article  CAS  Google Scholar 

  26. Tyagi SR, Burnham DN, Lambeth JD (1989) On the biological occurrence and regulation of 1-acyl and 1-O-alkyl-diradylglycerols in human neutrophils. Selective destruction of diacyl species using Rhizopus lipase. J Biol Chem 264:12977–12982

    PubMed  CAS  Google Scholar 

  27. Kates M (1986) in Laboratory techniques in biochemistry and molecular biology. In: Burdon RH, Knippenberg PHV (eds) vol. 3, part 2, 2nd revised edn. Elsevier, New York

Download references

Acknowledgments

This research was supported by National Institutes of Health grants HL 74214 (DAF) and RR19232 (DAF) as well as Grant-in-Aid 0650044Z (DAF) and Pre-doctoral fellowship grant 0710121Z (VVB) from the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Ford.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (DOC 19 kb)

ESM2 (TIF 1632 kb)

ESM3 (TIF 1503 kb)

About this article

Cite this article

Brahmbhatt, V.V., Nold, C., Albert, C.J. et al. Quantification of Pentafluorobenzyl Oxime Derivatives of Long Chain Aldehydes by GC–MS Analysis. Lipids 43, 275–280 (2008). https://doi.org/10.1007/s11745-008-3153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3153-x

Keywords

Navigation