Skip to main content
Log in

Inward Translocation of the Phospholipid Analogue Miltefosine across Caco-2 Cell Membranes Exhibits Characteristics of a Carrier-mediated Process

  • Original Article
  • Published:
Lipids

Abstract

Miltefosine (hexadecylphosphocholine, HePC) is the first effective oral agent for the treatment of visceral leishmaniasis. The characteristics of HePC incorporation into the human intestinal epithelial cell line Caco-2 were investigated in order to understand its oral absorption mechanism. The results provide evidence for the involvement of a carrier-mediated mechanism, since the association of HePC at the apical pole of Caco-2 cells was (1) saturable as a function of time with a rapid initial incorporation over 5 min followed by a more gradual increase; (2) saturable as a function of concentration over the range studied (2–200 μM) with a saturable component which followed Michaelis–Menten kinetics (apparent K m 15.7 μmol/L, V max 39.2 nmol/mg protein/h) and a nonspecific diffusion component; (3) partially inhibited by low temperature and ATP depletion, indicating the temperature and energy-dependence of the uptake process. Moreover, we demonstrated, by an albumin back-extraction method, that HePC is internalized via translocation from the outer to the inner leaflet of the plasma membrane and that HePC may preferentially diffuse through intact raft microdomains. In conclusion, our results suggest that incorporation of HePC at the apical membrane of Caco-2 cells may occur through a passive diffusion followed by a translocation in the inner membrane leaflet through an active carrier-mediated mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sundar S, Makharia A, More DK, Agrawal G, Voss A, Fischer C, Bachmann P, Murray HW (2000) Short-course of oral miltefosine for treatment of visceral leishmaniasis. Clin Infect Dis 31:1110–1113

    Article  PubMed  CAS  Google Scholar 

  2. Sundar S, Jha TK, Thakur CP, Engel J, Sindermann H, Fischer C, Junge K, Bryceson A, Berman J (2002) Oral miltefosine for Indian visceral leishmaniasis. N Engl J Med 347:1739–1746

    Article  PubMed  CAS  Google Scholar 

  3. Arnold B, Reuther R, Weltzien HU (1978) Distribution and metabolism of synthetic alkyl analogs of lysophosphatidylcholine in mice. Biochim Biophys Acta 530:47–55

    PubMed  CAS  Google Scholar 

  4. Geilen CC, Wieder T, Haase A, Reutter W, Morre DM, Morre DJ (1994) Uptake, subcellular distribution and metabolism of the phospholipid analogue hexadecylphosphocholine in MDCK cells. Biochim Biophys Acta 1211:14–22

    PubMed  CAS  Google Scholar 

  5. Hoffman DR, Hoffman LH, Snyder F (1986) Cytotoxicity and metabolism of alkyl phospholipid analogues in neoplastic cells. Cancer Res 46:5803–5809

    PubMed  CAS  Google Scholar 

  6. Van Blitterswijk WJ, Hilkmann H, Storme GA (1987) Accumulation of an alkyl lysophospholipid in tumor cell membranes affects membrane fluidity and tumor cell invasion. Lipids 22:P820–P823

    Article  Google Scholar 

  7. Dive C, Watson JV, Workman P (1991) Multiparametric flow cytometry of the modulation of tumor cell membrane permeability by developmental antitumor ether lipid SRI 62-834 in EMT6 mouse mammary tumor and HL-60 human promyelocytic leukemia cells. Cancer Res 51:799–806

    PubMed  CAS  Google Scholar 

  8. Grunicke HH (1991) The cell membrane as a target for cancer chemotherapy. Eur J Cancer 27:281–284

    Article  PubMed  CAS  Google Scholar 

  9. Modolell M, Andreesen R, Pahlke W, Brugger U, Munder PG (1979) Disturbance of phospholipid metabolism during the selective destruction of tumor cells induced by alkyl-lysophospholipids. Cancer Res 39:4681–4686

    PubMed  CAS  Google Scholar 

  10. Uberall F, Oberhuber H, Maly K, Zaknun J, Demuth L, Grunicke HH (1991) Hexadecylphosphocholine inhibits inositol phosphate formation and protein kinase C activity. Cancer Res 51:807–812

    PubMed  CAS  Google Scholar 

  11. Powis G, Seewald MJ, Gratas C, Melder D, Riebow J, Modest EJ (1992) Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Cancer Res 52:2835–2840

    PubMed  CAS  Google Scholar 

  12. Kelley EE, Modest EJ, Burns CP (1993) Unidirectional membrane uptake of the ether lipid antineoplastic agent edelfosine by L1210 cells. Biochem Pharmacol 45:2435–2439

    Article  PubMed  CAS  Google Scholar 

  13. Bazill GW, Dexter TM (1990) Role of endocytosis in the action of ether lipids on WEHI-3B, HL60, and FDCP-mix A4 cells. Cancer Res 50:7505–7512

    PubMed  CAS  Google Scholar 

  14. Hanson PK, Malone L, Birchmore J, Nichols J (2003) Lem3p is essential for the uptake and potency of alkylphosphocholine drugs, edelfosine and miltefosine. J Biol Chem 278:36041–36050

    Article  PubMed  CAS  Google Scholar 

  15. Perez-Victoria FJ, Gamarro F, Ouellette M, Castanys S (2003) Functional cloning of the miltefosine transporter. A novel P-type phospholipid translocase from Leishmania involved in drug resistance. J Biol Chem 278:49965–49971

    Article  PubMed  CAS  Google Scholar 

  16. Perez-Victoria FJ, Castanys S, Gamarro F (2003) Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrob Agents Chemother 47:2397–2403

    Article  PubMed  CAS  Google Scholar 

  17. Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749

    PubMed  CAS  Google Scholar 

  18. Geilen CC, Samson A, Wieder T, Wild H, Reutter W (1992) Synthesis of hexadecylphospho[methyl-14C]-choline. J Labelled Compd Radiopharm 31:1071–1076

    Article  CAS  Google Scholar 

  19. Eibl H, Woolley P (1988) A general synthetic method for enantiomerically pure ester and ether lysophospholipids. Chem Phys Lipids 47:63–68

    Article  CAS  Google Scholar 

  20. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  21. Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61–69

    Article  PubMed  CAS  Google Scholar 

  22. Ménez C, Buyse M, Chacun H, Farinotti R, Barratt G (2006) Modulation of intestinal barrier properties by miltefosine. Biochem Pharmacol 71:486–496

    Article  PubMed  CAS  Google Scholar 

  23. Diomede L, Colotta F, Piovani B, Re F, Modest EJ, Salmona M (1993) Induction of apoptosis in human leukemic cells by the ether lipid 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine. A possible basis for its selective action. Int J Cancer 53:124–130

    Article  PubMed  CAS  Google Scholar 

  24. Garcia-Garcia E, Andrieux K, Gil S, Kim HR, Le Doan T, Desmaele D, d’Angelo J, Taran F, Georgin D, Couvreur P (2005) A methodology to study intracellular distribution of nanoparticles in brain endothelial cells. Int J Pharm 298:310–314

    Article  PubMed  CAS  Google Scholar 

  25. Galdiero M, Vitiello M, D’Isanto M, Peluso L (2001) Induction of tyrosine phosphorylated proteins in THP-1 cells by Salmonella typhimurium, Pasteurella haemolytica and Haemophilus influenzae porins. FEMS Immunol Med Microbiol 31:121–130

    Article  PubMed  CAS  Google Scholar 

  26. LeDoan T, Etore F, Tenu JP, Letourneux Y, Agrawal S (1999) Cell binding, uptake and cytosolic partition of HIV anti-gag phosphodiester oligonucleotides 3′-linked to cholesterol derivatives in macrophages. Bioorg Med Chem 7:2263–2269

    Article  PubMed  CAS  Google Scholar 

  27. Clarke BL, Weigel PH (1985) Recycling of the asialoglycoprotein receptor in isolated rat hepatocytes. ATP depletion blocks receptor recycling but not a single round of endocytosis. J Biol Chem 260:128–133

    PubMed  CAS  Google Scholar 

  28. Mohandas N, Wyatt J, Mel SF, Rossi ME, Shohet SB (1982) Lipid translocation across the human erythrocyte membrane. Regulatory factors. J Biol Chem 257:6537–6543

    PubMed  CAS  Google Scholar 

  29. Ménez C, Buyse M, Dugave C, Farinotti R, Barratt G (2006) Intestinal absorption of miltefosine: contribution of passive paracellular transport. Pharm Res (in press). http://dx.doi.org/10.1007/s11095-006-9170-7

  30. Berkovic D, Fleer EA, Eibl H, Unger C (1992) Effects of hexadecylphosphocholine on cellular function. Prog Exp Tumor Res 34:59–68

    PubMed  CAS  Google Scholar 

  31. Wolkers WF, Looper SA, Fontanilla RA, Tsvetkova NM, Tablin F, Crowe JH (2003) Temperature dependence of fluid phase endocytosis coincides with membrane properties of pig platelets. Biochim Biophys Acta 1612:154–163

    Article  PubMed  CAS  Google Scholar 

  32. Steinman RM, Silver JM, Cohn ZA (1974) Pinocytosis in fibroblasts. Quantitative studies in vitro. J Cell Biol 63:949–969

    Article  PubMed  CAS  Google Scholar 

  33. Trotter PJ, Storch J (1991) Fatty acid uptake and metabolism in a human intestinal cell line (Caco-2): comparison of apical and basolateral incubation. J Lipid Res 32:293–304

    PubMed  CAS  Google Scholar 

  34. Chabot MC, Wykle RL, Modest EJ, Daniel LW (1989) Correlation of ether lipid content of human leukemia cell lines and their susceptibility to 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Cancer Res 49:4441–4445

    PubMed  CAS  Google Scholar 

  35. Diomede L, Bizzi A, Magistrelli A, Modest EJ, Salmona M, Noseda A (1990) Role of cell cholesterol in modulating antineoplastic ether lipid uptake, membrane effects and cytotoxicity. Int J Cancer 46:341–346

    Article  PubMed  CAS  Google Scholar 

  36. Heesbeen EC, Rijksen G, van Heugten HG, Verdonck LF (1995) Influence of serum levels on leukemic cell destruction by the ether lipid ET-18-OCH3. Leuk Res 19:417–425

    Article  PubMed  CAS  Google Scholar 

  37. Heesbeen EC, Verdonck LF, Haagmans M, van Heugten HG, Staal GE, Rijksen G (1993) Adsorption and uptake of the alkyllysophospholipid ET-18-OCH3 by HL-60 cells during induction of differentiation by dimethylsulfoxide. Leuk Res 17:143–148

    Article  PubMed  CAS  Google Scholar 

  38. Sundar S, Rosenkaimer F, Makharia MK, Goyal AK, Mandal AK, Voss A, Hilgard P, Murray HW (1998) Trial of oral miltefosine for visceral leishmaniasis. Lancet 352:1821–1823

    Article  PubMed  CAS  Google Scholar 

  39. Murota K, Storch J (2005) Uptake of micellar long-chain fatty acid and sn-2-monoacylglycerol into human intestinal Caco-2 cells exhibits characteristics of protein-mediated transport. J Nutr 135:1626–1630

    PubMed  CAS  Google Scholar 

  40. Trotter PJ, Ho SY, Storch J (1996) Fatty acid uptake by Caco-2 human intestinal cells. J Lipid Res 37:336–346

    PubMed  CAS  Google Scholar 

  41. Fleer EA, Berkovic D, Eibl H, Unger C (1993) Investigations on the cellular uptake of hexadecylphosphocholine. Lipids 28:731–736

    Article  PubMed  CAS  Google Scholar 

  42. Small GW, Strum JC, Daniel LW (1997) Characterization of an HL-60 cell variant resistant to the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Lipids 32:715–723

    Article  PubMed  CAS  Google Scholar 

  43. Vogel U, Sandvig K, van Deurs B (1998) Expression of caveolin-1 and polarized formation of invaginated caveolae in Caco-2 and MDCK II cells. J Cell Sci 111(Pt 6):825–832

    PubMed  CAS  Google Scholar 

  44. Storch J, Munder PG (1987) Increased membrane permeability for an antitumoral alkyl lysophospholipid in sensitive tumor cells. Lipids 22:813–819

    Article  PubMed  CAS  Google Scholar 

  45. Mollinedo F, Fernandez-Luna JL, Gajate C, Martin-Martin B, Benito A, Martinez-Dalmau R, Modolell M (1997) Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (Edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-X(L). Cancer Res 57:1320–1328

    PubMed  CAS  Google Scholar 

  46. Zoeller RA, Layne MD, Modest EJ (1995) Animal cell mutants unable to take up biologically active glycerophospholipids. J Lipid Res 36:1866–1875

    PubMed  CAS  Google Scholar 

  47. Fleer EA, Berkovic D, Unger C, Eibl H (1992) Cellular uptake and metabolic fate of hexadecylphosphocholine. Prog Exp Tumor Res 34:33–46

    PubMed  CAS  Google Scholar 

  48. Kotting J, Marschner NW, Neumuller W, Unger C, Eibl H (1992) Hexadecylphosphocholine and octadecyl-methyl-glycero-3-phosphocholine: a comparison of hemolytic activity, serum binding and tissue distribution. Prog Exp Tumor Res 34:131–142

    PubMed  CAS  Google Scholar 

  49. Santa-Rita RM, Santos Barbosa H, Meirelles MN, de Castro SL (2000) Effect of the alkyl-lysophospholipids on the proliferation and differentiation of Trypanosoma cruzi. Acta Trop 75:219–228

    Article  PubMed  CAS  Google Scholar 

  50. Ho SY, Storch J (2001) Common mechanisms of monoacylglycerol and fatty acid uptake by human intestinal Caco-2 cells. Am J Physiol Cell Physiol 281:C1106–1117

    PubMed  CAS  Google Scholar 

  51. Rey Gomez-Serranillos I, Minones J Jr, Dynarowicz-Latka P, Minones J, Iribarnegaray E (2004) Miltefosine-Cholesterol interactions: a monolayer study. Langmuir 20:928–933

    Article  PubMed  CAS  Google Scholar 

  52. Van der Luit AH, Budde M, Ruurs P, Verheij M, Van Blitterswijk WJ (2002) Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J Biol Chem 277:39541–39547

    Article  PubMed  CAS  Google Scholar 

  53. Voelker DR (1990) Lipid transport pathways in mammalian cells. Experientia 46:569–579

    Article  PubMed  CAS  Google Scholar 

  54. Pomorski T, Herrmann A, Muller P, van Meer G, Burger K (1999) Protein-mediated inward translocation of phospholipids occurs in both the apical and basolateral plasma membrane domains of epithelial cells. Biochemistry 38:142–150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Christophe Dugave for [3H]HePC synthesis and would like to thank Hélène Chacun for valuable help in radioactivity studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian Barratt.

About this article

Cite this article

Ménez, C., Buyse, M., Farinotti, R. et al. Inward Translocation of the Phospholipid Analogue Miltefosine across Caco-2 Cell Membranes Exhibits Characteristics of a Carrier-mediated Process. Lipids 42, 229–240 (2007). https://doi.org/10.1007/s11745-007-3026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-007-3026-8

Keywords

Navigation