Skip to main content
Log in

Altered Lipid Parameters in Hepatic Subcellular Membrane Fractions Induced by Fumonisin B1

  • Original Article
  • Published:
Lipids

Abstract

Alteration of lipid constituents of cellular membranes has been proposed as a possible mechanism for cancer promotion by fumonisin B1 (FB1). To further investigate this hypothesis a dietary dosage which initiates and promotes liver cancer (250 mg FB1/kg) was fed to male Fischer rats for 21 days and the lipid composition of plasma, microsomal, mitochondrial and nuclear subcellular fractions determined. The effect of FB1 on the cholesterol, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), as well as sphingomyelin (SM) and the phospholipids-associated fatty acid (FA) profiles, were unique for each subcellular membrane fraction. PE was significantly increased in the microsomal, mitochondrial and plasma membrane fractions, whereas cholesterol was increased in both the microsomal and nuclear fraction. In addition SM was decreased and increased in the mitochondrial and nuclear fractions, respectively. The decreased PC/PE and polyunsaturated/saturated (P/S) FA ratio in the different membrane fractions suggest a more rigid membrane structure. The decreased levels in polyunsaturated fatty acids in PC together with a pronounced increase in C18:1ω9 and C18:2ω6 were indicative of an impaired delta-6 desaturase. The increased ω6/ω3 ratio and decreased C20:4ω6 PC/PE ratio due to an increase in C20:4ω6 in PE relatively to PC in the different subcellular fractions suggests a shift towards prostanoid synthesis of the E2 series. Changes in the PE and C20:4ω6 parameters in the plasma membrane could alter key growth regulatory and/or other cell receptors in lipid rafts known to be altered by FB1. An interactive role between C20:4ω6 and ceramide in the mitochondria, is suggested to regulate the balance between proliferation and apoptosis in altered initiated hepatocytes resulting in their selective outgrowth during cancer promotion effected by FB1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Funari SS, Barceló F, Escribá PV (2003) Effects of oleic acid and its congeners, elaidic and stearic acids, on the structural properties of phosphatidylethanolamine membranes. J Lipid Res 44:567–575

    Article  PubMed  CAS  Google Scholar 

  2. Gudi S, Nolan JP, Frangos JA (1998) Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc Natl Acad Sci 95:2515–2519

    Article  PubMed  CAS  Google Scholar 

  3. Fuller N, Rand RP (2001) The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys J 81:243–254

    PubMed  CAS  Google Scholar 

  4. Emoto K, Umeda M (2000) An essential role for a membrane lipid in cytokinesis: regulation of contractile ring disassembly by redistribution of phosphatidylethanolamine. J Cell Biol 149:1215–1224

    Article  PubMed  CAS  Google Scholar 

  5. Nyholm TKM, Nylund M, Slotte JP (2003) A calorimetric study of binary mixtures of dihydrosphingomyelin and sterols, sphingomeylin, or phosphatidylcholine. Biophys J 48:3138–3146

    Article  Google Scholar 

  6. Brown RE (1998) Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci 111:1–9

    PubMed  CAS  Google Scholar 

  7. Eriksson LC, Andersson GN (1992) Membrane biochemistry and chemical hepatocarcinogenesis. Crit Rev Biochem Mol Biol 27:1–55

    PubMed  CAS  Google Scholar 

  8. Weisburger JH, Wynder EL (1984) The role of genotoxic carcinogens and of promoters in carcinogenesis and in human cancer causation. Acta Pharmacol Toxicol (Copenh) 55:53–68

    CAS  Google Scholar 

  9. Stern RG, Milestone BN, Gatenby RA (1999) Carcinogenesis and the plasma membrane. Med Hypotheses 52:367–372

    Article  PubMed  CAS  Google Scholar 

  10. Galeotti T, Borrello S, Minotti G, Masotti L (1986) Membrane alterations in cancer cells: the role of oxy radicals. Ann NY Acad Sci 488:468–480

    Article  PubMed  CAS  Google Scholar 

  11. Burns CP, Spector AA (1994) Biochemical effects of lipids on cancer therapy. J Nutr Biochem 5:114–123

    Article  CAS  Google Scholar 

  12. Gelderblom WCA, Jaskiewicz K, Marasas WFO, Thiel PG, Horak MJ, Vleggaar R, Kriek NPJ (1988) Fumonisin—novel mycotoxin with cancer promoting activity produced by Fusarium moniliforme. Appl Environ Microb 54:1806–1811

    CAS  Google Scholar 

  13. Rheeder JP, Marasas WFO, Thiel PG, Sydenham EW, Shephard GS, Van Schalkwyk DJ (1992) Fusarium moniliforme and fumonisin in corn in relation to oesophageal cancer in Transkei. Phytopathology 82:353–357

    Google Scholar 

  14. Ueno Y, Iijima K, Wang SD, Sugiura Y, Sekijima M, Tanaka T, Chen C, Yu SZ (1997) Fumonisins as a possible contributory risk factor for primary liver cancer: a 3-year study of corn harvested in Haimen, China, by HPLC and ELISA. Food Chem Toxicol 35:1143–1150

    Article  PubMed  CAS  Google Scholar 

  15. Marasas WFO, Riley RT, Hendricks KA, Stevens VL, Sadler TW, Gelineau-van Waes J, Missmer SA, Cabrera J, Torres O, Gelderblom WCA, Allegood J, Martínez C, Maddox J, Miller JD, Starr L, Sullards MC, Roman AV, Voss KA, Wang E, Merrill AH (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134:711–716

    PubMed  CAS  Google Scholar 

  16. Gelderblom WCA, Kriek NPJ, Marasas WFO, Thiel PG (1991) Toxicity and carcinogenicity of the Fusarium moniliforme metabolite, fumonisin B1, in rats. Carcinogenesis 12:1247–1251

    Article  PubMed  CAS  Google Scholar 

  17. Lemmer ER, Vessey CJ, Gelderblom WCA, Shephard EG, Van Schalkwyk DJ, Rochelle DJ, Van Wijk A, Marasas WFO, Kirsch RE, Hall P (2004) Fumonisin B1-induced hepatocellular and cholangiocellular tumors in male Fischer 344 rats: potentiating effects of 2-acetylaminofluorene on oval cell proliferation and neoplastic development in a discontinued feeding study. Carcinogenesis 25:1–8

    Article  CAS  Google Scholar 

  18. Gelderblom WCA, Cawood ME, Snyman SD, Marasas WFO (1994) Fumonisin B1 dosimetry in relation to cancer initiation in rat liver. Carcinogenesis 15:209–214

    Article  PubMed  CAS  Google Scholar 

  19. Gelderblom WCA, Snyman SD, Lebepe-Mazur S, van der Westhuizen L, Kriek NPJ, Marasas WFO (1996) The cancer promoting potential of fumonisin B1 in rat liver using diethylnitrosamine as cancer initiator. Cancer Lett 109:101–108

    Article  PubMed  CAS  Google Scholar 

  20. Knasmueller S, Bresgen N, Kassie F, Merch-Sundermann V, Gelderblom WCA, Zohrer E, Eckl PM (1997) Genotoxic effects of three Fusarium mycotoxins, fumonisin B1, moniliformin and vomitoxin in bacteria and in primary rat hepatocytes. Mutat Res 391:39–48

    Google Scholar 

  21. Gelderblom WCA, Snyman SD (1991) Mutagenicity of potentially carcinogenic mycotoxins produced by Fusarium moniliforme. Mycol Res 7:46–52

    CAS  Google Scholar 

  22. Norred WP, Plattner RD, Vesonder RF, Bacon CW, Voss KA (1992) Effects of selected secondary metabolites of Fusarium moniliforme on unscheduled synthesis of DNA by rat primary hepatocytes. Food Chem Toxicol 30:233–237

    Article  PubMed  CAS  Google Scholar 

  23. Abel S, Gelderblom WCA (1998) Oxidative damage and fumonisin B1-induced toxicity in primary rat hepatocytes and rat liver in vivo. Toxicology 131:121–131

    Article  PubMed  CAS  Google Scholar 

  24. Ehrlich V, Darroudi F, Uhl M, Steinkellner H, Zsivkovits M, Knasmueller S (2002) Fumonisin B1 is genotoxic in human derived hepatoma (HepG2) cells. Mutagenesis 17:257–260

    Article  PubMed  CAS  Google Scholar 

  25. Gelderblom WCA, Abel S, Smuts CM, Marnewick J, Marasas WFO, Lemmer ER, Ramljak D (2001) Fumonisin-induced hepatocarcinogenesis: mechanisms related to cancer initiation and promotion. Environ Health Perspect 109:291–300

    Article  PubMed  CAS  Google Scholar 

  26. Gelderblom WCA, Snyman SD, Van der Westhuizen L, Marasas WFO (1995) Mitoinhibitory effect of fumonisin B1 on rat hepatocytes in primary culture. Carcinogenesis 16:625–631

    Article  PubMed  CAS  Google Scholar 

  27. Tsuda H, Lee G, Faber E (1981) Induction of resistant hepatocytes as a new principle for possible short-term in vivo test for carcinogens. Cancer Res 41:2096–2102

    Google Scholar 

  28. Faber E (1991) Clonal adaptation as an important phase of hepatocarcinogenesis. Cancer Biochem Biophys 12:157–165

    Google Scholar 

  29. Gelderblom WCA, Smuts CM, Abel S, Snyman SD, Van der Westhuizen L, Huber WW, Swanevelder S (1997) The effect of fumonisin B1 on the levels and fatty acid composition of selected lipids in rat liver in vivo. Food Chem Toxicol 35:647–656

    Article  PubMed  CAS  Google Scholar 

  30. Gelderblom WCA, Moritz W, Swanevelder S, Smuts CM, Abel S (2002) Lipids and delta 6-desaturase activity alterations in rat liver microsomal membranes induced by fumonisin B1. Lipids 37:869–877

    Article  PubMed  CAS  Google Scholar 

  31. Cawood ME, Gelderblom WCA, Vleggaar R, Behrend Y, Thiel PG, Marasas WFO (1991) Isolation of the fumonisin mycotoxins: a quantitative approach. J Agric Food Chem 39:1958–1962

    Article  CAS  Google Scholar 

  32. Bartoli GM, Bartoli S, Galeotti T, Bertoli E (1980) Superoxide dismutase content and microsomal lipid composition of tumours with different growth rates. Biochim Biophys Acta 620:205–211

    PubMed  CAS  Google Scholar 

  33. Loten EG, Redshaw-Loten JC (1986) Preparation of rat liver plasma membranes in a high yield. Anal Biochem 154:183–185

    Article  PubMed  CAS  Google Scholar 

  34. Kaushal V, Barnes LD (1986) Effect of zwitterionic buffers on measurement of small masses of protein with bicinchoninic acid. Anal Biochem 157:291–294

    Article  PubMed  CAS  Google Scholar 

  35. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  36. Smuts CM, Weich HFH, Weight MJ, Faber M, Kruger M, Lombard CJ, Benadé AJS (1994) Free cholesterol concentrations in the high-density Lipoprotein subfraction-3 as a risk indicator in patients with angiographically documented coronary artery disease. Coron Artery Dis 5:331–338

    Article  PubMed  CAS  Google Scholar 

  37. Gilfillan AM, Chu AJ, Smart DA, Rooney SA (1983) Single plate separation of lung phospholipids including disaturated phosphatidylcholine. J Lipid Res 24:1651–1656

    PubMed  CAS  Google Scholar 

  38. Itaya K, Ui M (1966) A new micromethod for the colorimetric determination of inorganic phosphate. Clin Chim Acta 14:361–366

    Article  PubMed  CAS  Google Scholar 

  39. Richmond W (1973) Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin Chem 19:1350–1356

    PubMed  CAS  Google Scholar 

  40. Tichelaar HY, Benadé AJS, Daubitzer AK, Kotze TJ (1989) An improved rapid thin-layer chromatographic–gas-liquid chromatographic procedure for the determination of free fatty acids in plasma. Clin Chim Acta 183:207–216

    Article  PubMed  CAS  Google Scholar 

  41. Riley RT, Enongene E, Voss KA, Norred WP, Meredith FI, Sharma RP, Williams DE, Carlson DB, Spitsbergen J, Merrill AH Jr (2001) Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. Environ Health Perspect 109:301–308

    Article  PubMed  CAS  Google Scholar 

  42. Mahler SM, Wilce A, Shanley BC (1988) Studies on regenerating liver and hepatoma plasma membranes—I. Lipid and protein composition. Int J Biochem 20:605–611

    Article  PubMed  CAS  Google Scholar 

  43. Mahler SM, Wilce A, Shanley BC (1988) Studies on regenerating liver and hepatoma plasma membranes—II. Membrane fluidity and enzyme activity. Int J Biochem 20:613–619

    Article  PubMed  CAS  Google Scholar 

  44. Abel S, Smuts CM, De Villiers C, Gelderblom WCA (2001) Changes in essential fatty acid patterns associated with normal liver regeneration and the progression of hepatocyte nodules in rat hepatocarcinogenesis. Carcinogenesis 22:795–804

    Article  PubMed  CAS  Google Scholar 

  45. Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte JP (2002) Cholesterol interaction with phospholipids in membranes. Prog Lipid Res 41:66–97

    Article  PubMed  CAS  Google Scholar 

  46. Sehgal PB, Guo GG, Shah M, Kumar V, Patel K (2002) Cytokine Signaling: STATS in plasma membrane rafts. J Biol Chem 277:12067–12074

    Article  PubMed  CAS  Google Scholar 

  47. Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667

    Article  PubMed  CAS  Google Scholar 

  48. Huo H, Guo X, Hong S, Jiang M, Liu X, Liao K (2003) Lipid rafts/caveolae are essential for insulin-like growth factor-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction. J Biol Chem 278:11561–11569

    Article  PubMed  CAS  Google Scholar 

  49. Pike LJ (2005) Growth factor receptors, lipid rafts and caveolae: an evolving story. Biochim Biophys Acta 1746:260–273

    Article  PubMed  CAS  Google Scholar 

  50. Cottin V, Doan JES, Riches DWH (2002) Restricted localization of the TNF receptor CD120a to lipid rafts: a novel role for the death domain. J Immunol 168:4095–4102

    PubMed  CAS  Google Scholar 

  51. Kamen BA, Smith AK (2004) A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Deliv Rev 56:1085–1097

    Article  PubMed  CAS  Google Scholar 

  52. Stevens VL, Tang J (1997) Fumonisin B1-induced sphingolipid depletion inhibits vitamin uptake via the glycosylphosphatidylinositol-anchored folate receptor. J Biol Chem 272:18020–18025

    Article  PubMed  CAS  Google Scholar 

  53. He Q, Kim J, Sharma RP (2005) Fumonisin B1 hepatotoxicity in mice is attenuated by depletion of Kupffer cells by gadolinium chloride. Toxicology 207:137–147

    Article  PubMed  CAS  Google Scholar 

  54. Gelderblom WC, Abel S, Smuts CM, Swanevelder S, Snyman SD (1999) Regulation of fatty acid biosynthesis as a possible mechanism for the mitoinhibitory effect of fumonisin B1 in primary rat hepatocytes. Prostaglandins Leukot Essent Fatty Acids 61:225–234

    Article  PubMed  CAS  Google Scholar 

  55. Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST (2003) Differential effects of prostaglandin derived from w6 and w3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci USA 100:1751–1756

    Article  PubMed  CAS  Google Scholar 

  56. Pahl HL (1999) Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol Rev 79:683–701

    PubMed  CAS  Google Scholar 

  57. Spotti M, Maas RFM, De Nijs CM, Fink-Gremmels J (2000) Effect of fumonisin B1 on rat hepatic P450 system. Environ Toxicol Pharmacol 8:197–204

    Article  PubMed  CAS  Google Scholar 

  58. Wang E, Norred WP, Bacon CW, Riley RT, Merill AH Jr (1991) Inhibition of sphingolipid biosynthesis by fumonisins: implications for disease associated with Fusarium Moniliforme. J Biol Chem 266:14486–14490

    PubMed  CAS  Google Scholar 

  59. Bevers EM, Comfurius P, Dekkers DWC, Zwaal RFE (1999) Lipid translocation across the plasma membrane of mammalian cells. Biochem Biophys Acta 1439:317–330

    PubMed  CAS  Google Scholar 

  60. Ardail D, Popa I, Alcantara K, Pons A, Zanetta JP, Louisot P, Thomas L, Portoukalian J (2001) Occurrence of ceramides and neutral glycolipids with unusual long-chain base composition in purified rat liver mitochondria. FEBS Lett, 488:160–164

    Article  PubMed  CAS  Google Scholar 

  61. Bionda C, Portoukalian J, Schmitt D, Rodriguez-Lafrasse C, Ardail D (2004) Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem J 382:527–533

    Article  PubMed  CAS  Google Scholar 

  62. Won JS, Singh I (2006) Sphingolipid signaling and redox regulation. Free Rad Biol Med 40:1875–1888

    Article  PubMed  CAS  Google Scholar 

  63. Klöhn PC, Soriano ME, Irwin W, Penzo D, Scorrano L, Bitsch A, Neumann H-G, Bernardi P (2003) Early resistance to cell death and to onset of the mitochondrial permeability transition during hepatocarcinogenesis with 2-acetylaminofluorene. Proc Natl Acad Sci 100:10014–10019

    Article  PubMed  CAS  Google Scholar 

  64. Dragan YP, Bidlack WR, Cohen SM, Goldsworthy TL, Hard GC, Howard PC, Riley RT, Voss KA (2001) Implications of apoptosis for toxicity, carcinogenicity, and risk assessment: fumonisin B1 as an example. Toxicol Sci 61:6–17

    Article  PubMed  CAS  Google Scholar 

  65. Lemmer ER, Hall PDM, Gelderblom WCA, Marasas WFO (1998) Poor reporting of oocyte apoptosis. Nat Med 4:373

    Article  PubMed  CAS  Google Scholar 

  66. Van der Westhuizen L, Gelderblom WCA, Shephard GS, Swanevelder S (2004) Disruption of sphingolipid biosynthesis in hepatocyte nodules: selective proliferative stimulus induced by fumonisin B1. Toxicology 200:69–75

    Article  PubMed  CAS  Google Scholar 

  67. Ledeen RW, Wu G (2004) Nuclear lipids: key signaling effectors in the nervous system and other tissues. J Lipid Res 45:1–8

    Article  PubMed  CAS  Google Scholar 

  68. Sahu AC, Epply RM, Page SW, Gray GG, Barton CN, O’Donnell MW (1998) Peroxidation of membrane lipids and oxidative DNA damage by fumonisin B1 in isolated rat liver nuclei. Cancer Lett 125:117–121

    Article  PubMed  CAS  Google Scholar 

  69. Pala V, Krogh V, Muti P, Chajès V, Riboli E, Micheli A, Saadatian M, Sieri S, Berrino F (2001) Erythrocyte membrane fatty acids and subsequent breast cancer: a prospective Italian study. J Natl Cancer Inst 93:1088–1095

    Article  PubMed  CAS  Google Scholar 

  70. Lu J, Pei H, Kaeck M, Thompson HJ (1997) Gene expression changes associated with chemically induced rat mammary carcinogenesis. Mol Carcinog 20:204–215

    Article  PubMed  CAS  Google Scholar 

  71. De Alaniz MJ, Marra CA (1994) Role of delta 9-desaturase activity in the maintenance of high levels of monoenoic fatty acids in hepatoma cultured cells. Mol Cell Biochem 137:85–90

    Article  PubMed  Google Scholar 

  72. Marzo I, Martinez-Lorenzo MJ, Anel A, Desportes P, Alava MA, Naval J, Pineiro A (1995) Biosynthesis of unsaturated fatty acids in the main cell lineages of human leukemia and lymphoma. Biochim Biophys Acta 1257:140–148

    PubMed  Google Scholar 

  73. Khoo DE, Fermor B, Miller J, Wood CB, Apostolov K, Barker W, Williamson RC, Habib NA (1991) Manipulation of body fat composition with sterculic acid can inhibit mammary carcinomas in vivo. Br J Cancer 63:97–101

    PubMed  CAS  Google Scholar 

  74. Diplock AT, Balasubramanian KA, Manohar M, Mathan VI, Ashton D (1988) Purification and chemical characterization of the inhibitor of lipid peroxidation from intestinal mucosa, Biochim Biophys Acta 926:42–50

    Google Scholar 

  75. Abel S, De Kock M, Smuts CM, De Villiers C, Swanevelder S, Gelderblom WCA (2004) Dietary modulation of fatty acid profiles and oxidative status of rat hepatocyte nodules: effect of different n − 6/n − 3 fatty acid ratios. Lipids 39:963–976

    Article  PubMed  CAS  Google Scholar 

  76. Seegers JC, Joubert AM, Panzer A, Lottering ML, Jordan CA, Joubert F, Maree JL, Bianchi P, De Kock M, Gelderblom WCA (2000) Fumonisin B1 influenced the effects of arachidonic acid, prostaglandins E2 and A2 on cell cycle progression, apoptosis induction, tyrosine- and CDC2-kinase activity in oesophageal cancer cells. Prostaglandins Leukot Essent Fatty Acids 62:75–84

    Article  PubMed  CAS  Google Scholar 

  77. Tapiero H, Ba GN, Couvreur P, Tew KD (2002) Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother 56:215–222

    Article  PubMed  CAS  Google Scholar 

  78. Cao Y, Pearman AT, Zimmerman GA, McUntyre TM, Prescott SM (2000) Intracellular unestrified arachidonic acid signals apoptosis. Proc Natl Acad Sci USA 97:11280–11285

    Article  PubMed  CAS  Google Scholar 

  79. Zhao S, Du XY, Chai MQ, Chen JS, Zhou YC, Song JG (2002) Secretory phospholipase A2 induces apoptosis via a mechanism involving ceramide generation. Biochem Biophys Acta 1581:75–88

    PubMed  CAS  Google Scholar 

  80. Liou JY, Aleksic N, Chen SF, Han TJ, Shyue SK, Wu KK (2005) Mitochondrial localization of cyclooxygenase-2 and calcium-independent phospholipase A2 in human cancer cells: implication in apoptosis resistance. Exp Cell Res 306:75–84

    Article  PubMed  CAS  Google Scholar 

  81. Pinelli E, Poux N, Garren L, Pipy B, Castegnaro M, Miller DJ, Pfohl-Leszkowicz A (1999) Activation of mitogen-activated protein kinase by fumonisin B1 stimulates cPLA2 phophorylation, the arachidonic acid cascade and cAMP production. Carcinogenesis 20:1683–1688

    Article  PubMed  CAS  Google Scholar 

  82. Shibata M, Kodani I, Osaki M, Araki K, Adachi H, Ryoke K, Ito H (2005) Cyclo-oxygenase-1 and -2 expression in human oral mucosa, dysplasias and squamous cell carcinomas and their pathological significance. Oral Oncol 41:304–312

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Nutritional Intervention Research Unit for the use of their laboratory and gas-chromatography equipment. With thanks also to Johanna van Wyk for conducting the gas-chromatography analysis as well as Amelia Damons and John Moketary for washing and cleaning all the glassware. This project was funded by the Medical Research Council of South Africa and the National Research Foundation. Grant no FA2005032200026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-M. Burger.

About this article

Cite this article

Burger, HM., Abel, S., Snijman, P. et al. Altered Lipid Parameters in Hepatic Subcellular Membrane Fractions Induced by Fumonisin B1 . Lipids 42, 249–261 (2007). https://doi.org/10.1007/s11745-007-3025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-007-3025-9

Keywords

Navigation