Skip to main content
Log in

Comparative study of lipids in mature seeds of six Cordia species (family boraginaceae) collected in different regions of Brazil

  • Published:
Lipids

Abstract

The oil content, FA, and lipid class composition of the mature seeds of six Cordia species were analyzed. Mature seeds of each species were collected in their natural habitat from 2002 to 2004. The total lipid content varied from 1.9% to 13.2%, there beings significant differences between the results found in different years for each species and between the species analyzed. The contents of FFA varied from 2.0% to 7.9% of total lipids. Neutral lipids (NL) were the largest class, making up between 89.6% and 96.4% of the total lipids; the phospholipids (PL) were the second largest class (3.0% to 8.9% of the toal lipids), and the glycolipids (GL) were the smallest class (0.6 to 3.4%). The presence of GLA was determined in each class of lipids; it is predominant in the NL. Levels of GLA ranged from 1.2% to 6.8% of total seed FA. This is, to our knowledge the first study of lipid composition in seeds of species of Cordia from Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hornych, A., Oravec, S., Girault, F., Forette, B., and Horrobin, D.F. (2002) The Effect of Gamma-Linolenic Acid on Plasma and Membrane Lipids and Renal Prostaglandin Synthesis in Older Subjects, Bratislava Med. J. 103, 101–107.

    CAS  Google Scholar 

  2. Suresh, T., and Das, U.N. (2003) Long-Chain Polyunsaturated Fatty Acids and Chemically Induced Diabetes Mellitus—Effect of ω-6 Fatty Acids, Nutrition 19, 93–114.

    Article  PubMed  CAS  Google Scholar 

  3. Van Gool, J.A.W., Thijs, C., Henquet, C.J.M., Houwelingen, A.C., van Pieter, P.C., Schrander, P., Menheere P.C.A., and van den Brandt, P.A. (2003) Gamma-Linolenic Acid Supplementation for Prophylaxis of Atopic Dermatitis—A Randomized Controlled Trial in Infants at High Familiar Risk, Am. J. Clin. Nutr. 77, 943–951.

    PubMed  Google Scholar 

  4. Meehan, E., Beauge, F., Choquart, D., and Leonard, B.E. (1995) Influence of an n−6 Polyunsaturated Fatty Acid Enriched Diet on the Development of Tolerance During Chronic Ethanol Administration in Rats, Alcoholism Clin. Exp. Res. 19, 1441–1446.

    Article  CAS  Google Scholar 

  5. Girman, A., Lee, R., and Krigler, B. (2003) An Interactive Medicine Approach to Premenstrual Syndrome, Am. J. Obstetrics Gynecol. 188, S56-S65.

    Article  Google Scholar 

  6. Stlouis, C., Lee, R.M.K.W., Osenfeld, L., and Fargasbabjak, A. (1992) Antihypertensive Effect of γ-Linolenic Acid in Sponataneously Hypertensive Rat, Hypertension 19, 111–115.

    Google Scholar 

  7. Bellenger-Germain, S., Poisson, J.P., and Narce, M. (2002) Antihypertensive Effects of a Dietary Unsaturated FA Mixture in Spontaneously Hypertensive Rats, Lipids 37, 561–567.

    Article  PubMed  CAS  Google Scholar 

  8. Bakshi, A., Mukherjee, D., Bakshi, A., Banerji, A.K., and Undurti, N., (2003) Gamma-Linolenic Acid Therapy of Human Liomas, Nutrition 19, 305–308.

    Article  PubMed  CAS  Google Scholar 

  9. Fukushima, M., Akiba, S., and Nakano, M. (1996) Comparative Hypocholesterolemic Effects of Six Vegetable Oils in Cholesterol-Fed Rat, Lipids 31, 415–419.

    Article  PubMed  CAS  Google Scholar 

  10. Laidlaw, M., and Holub, B.J. (2003) Effects of Supplementation with Fish-Oil Derived n−3 Fatty Acids and γ-Linolenic Acid on Circulating Plasma Lipids and Fatty Acid Profiles in Women, Am. J. Clin. Nutr. 77, 37–42.

    PubMed  CAS  Google Scholar 

  11. Arrebola, M.R.B., Peterlin, M.F., Bastos, D.H.M., Rodrigues, R.F.O., and Carvalho, P.O. (2004) Estudo dos Components Lipídicos das Sementes de Três Espécies do Gênero Cordia L. (Boraginaceae), Revista Brasileira de Farmacognosia, 14, 57–65.

    Article  Google Scholar 

  12. Velasco, L., and Goffman, F.D. (1999) Chemotaxonomic Significance of Fatty Acids and Tocopherols in Boraginaceae, Phytochemistry 52, 423–426.

    Article  CAS  Google Scholar 

  13. Miller, R.W., Earle, F.R., and Wolff, I.A. (1968) Search for New Industrial Oils. XV. Oils of Boraginaceae, Lipids 3, 43–45.

    Article  PubMed  CAS  Google Scholar 

  14. Mikolajczak, K.L., Seigler, D.S., Smith, Jr. C.R., Wolff, I.A., and Bates, R.B. (1969) A Cyanogenetic Lipid from Cordia verbenacea DC. Seed Oil, Lipids 4, 617–619.

    Article  PubMed  CAS  Google Scholar 

  15. Daulatadbad, C.M.J.D., Desai, V.A., and Hosamani, K.M. (1992) Unusual Fatty Acids of Cordia rothii Seed Oil, J. Sci. Food Agric. 58, 285–286.

    Google Scholar 

  16. Kleinman, R., Earle, F.R., and Wolff, I.A. (1964) Search for New Industrial Oils of Boraginaceae, J. Am. Oil Chem. Soc. 41, 459–460.

    Google Scholar 

  17. Mukarram, M., Ahmad, I., and Farooqi, A. (1986) Studies on Minor Seed Oils. VI., Fette Seifen Anstrichmittel 88, 182–183.

    Article  CAS  Google Scholar 

  18. Mayworm, M.A.S., Nascimento, A.S., and Salatino, A. (1998) Seeds of a Species from the “Caatinga”: Proteins Oils and Fatty Acid Contents, Revista Brasileira de Botânica 21, 299–303.

    Google Scholar 

  19. Bligh, E.G., and Dyer, J.W. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  20. Christie, W.W. (1982) Analysis of Complex Lipid, in Lipid Analysis, 2nd edn., pp. 107–134, Pergamon., New York.

    Google Scholar 

  21. Kwon, D.Y., and Rhee, J.S. (1986) Simple and Rapid Colorimetric Method for Determination of Free Fatty Acids for Lipase Assay, J. Am. Oil Chem. Soc. 63, 89–92.

    CAS  Google Scholar 

  22. American Oil Chemist's Society (AOCS). (1993) Official Methods and Recommended Practices of the American Oil Chemist's Society, 4th edn., vol. 2., AOCS, Champaign, IL.

    Google Scholar 

  23. Ruiz del Castillo, M.L., Dobson, G., Brennan, R., and Gordon, S. (2002) Genotypic Variation in Fatty Acid Content of Blackcurrant Seeds, J. Agric. Food Chem. 50, 332–335.

    Article  PubMed  CAS  Google Scholar 

  24. Hamrouni, I., Touati, S., and Marzouk, B. (2002) Evolution des Lipids au Course de la Formation et de la Maturation de la Graine de Bourrache (Bourago officinalis) La Rivista Italiana delle Sostanze Grasse 79, 113–118.

    Google Scholar 

  25. Senanayake, N.S.P.J., and Shahidi, F. (2000) Lipid Contents of Borage (Borago officinalis L.) Seeds and Their Changes During Germination, J. Am. Oil Chem. Soc. 77, 55–61.

    Article  CAS  Google Scholar 

  26. Ministério da Ciência e Tecnologia, Centro de Previsão de Tempo e Estudos Climáticos. http://www.cpttec.inpe.br/products/climanalise/Accessed 23 Nov. 2004.

  27. Guil-Guerrero, J.L., Maroto, F.F.G., and Goménez, A.G. (2001) Fatty Acid Profiles from Forty-nine Plant Species That Are Potential New Sources of Gamma-Linolenic Acid, J. Am. Oil Chem. Soc. 78, 677–684.

    Article  CAS  Google Scholar 

  28. Tsevegüren, N., and Aitzetmüller, K. (1996) Gamma-Linolenic and Stearidonic Acids in Mongolian Boraginaceae, J. Am. Oil Chem. Soc. 73, 1681–1684.

    Article  Google Scholar 

  29. Hansen, C.E., Stoessel, P., and Rossi, P. (1991) Distribution of Gamma-Linolenic Acid in the Confrey (Symphytum officinalle) Plant, J. Sci. Food Agric. 54, 309–312.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra C. H. F. Sawaya.

About this article

Cite this article

Carvalho, P.d.O., Arrebola, M.B., Sawaya, A.C.H.F. et al. Comparative study of lipids in mature seeds of six Cordia species (family boraginaceae) collected in different regions of Brazil. Lipids 41, 813–817 (2006). https://doi.org/10.1007/s11745-006-5035-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5035-4

Keywords

Navigation