Skip to main content
Log in

1H and 13C NMR characterization and stereochemical assignments of bile acids in aqueous media

  • Articles
  • Published:
Lipids

Abstract

The unconjugated bile acids cholic acid, deoxycholic acid, and chenodeoxycholic acid; their glycine and taurine conjugated glycocholic acid, glycodeoxycholic acid, glycochenodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, and taurochenodeoxycholic acid; and a taurine conjugated ursodeoxycholic acid, tauroursodeoxycholic acid, were characterized through 1H and 13C NMR in aqueous media under the physiological pH region (7.4±0.1). Assignments of 1H and 13C signals of all the bile acids were made using a combination of several one- and two-dimensional, homonuclear (1H−1H) and heteronuclear (1H−13C) correlations as well as spectral editing NMR methods. Stereochemical assignment of the five-membered ring of the bile acids is reported here for the first time. The complete characterization of various bile acids in aqueous media presented here may have implications in the study of the pathophysiology of biliary diseases through human biliary fluids using NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CA:

cholic acid

CDCA:

chenodeoxycholic acid

DCA:

deoxycholic acid

DQF-COSY:

double-quantum filtered COSY

FID:

free induction decay

GCA:

glycocholic acid

GCDCA:

glycochenodeoxycholic acid

GDCA:

glycodeoxycholic acid

HMBC:

heteronuclear multiple-bond correlation

HSQC:

heteronuclear single-quantum correlation

nOe:

nuclear Overhauser enhancement

NOESY:

nuclear Overhauser enhancement spectroscopy

QCD:

quaternary carbon detection

SEFT:

spin-echo FT

TCA:

taurocholic acid

TCDCA:

taurochenodeoxycholic acid

TDCA:

taurodeoxycholic acid

TUDCA:

tauroursodeoxycholic acid

UDCA:

ursodeoxycholic acid

References

  1. Ikegawa, S., Okuyama, H., Oohashi, J., Murao, N., and Goto, J. (1999) Separation and Detection of Bile Acid 24-Glucuronides in Human Urine by Liquid Chromatography Combined with ElectrosprayIonization Mass Spectrometry, Anal. Sci. 15, 625–631.

    Article  CAS  Google Scholar 

  2. Tamminen, J., and Kolehmainen, E. (2001) Bile Acids as Building Blocks of Supramolecular Hosts, Mol. 6, 21–46.

    CAS  Google Scholar 

  3. Galman, C., Arvidsson, I., Angelin, B., and Rudling, M. (2003) Monitoring Hepatic Cholesterol 7α-Hydroxylase Activity by Assay of Stable Bile Acid Intermediate 7α-Hydroxy-4-cholesten-3-one in Peripheral Blood, J. Lipid Res. 44, 859–865.

    Article  PubMed  CAS  Google Scholar 

  4. Sherwin, J.E., and Sobenes, J.R. (1989) Liver Function, in Clinical Chemistry (Kaplan, L.A., and Pesce, A.J., eds.), pp. 359–379, C.V. Mosby, St. Louis.

    Google Scholar 

  5. Moseley, R.H., Bile Secretion, in Textbook of Gastroenterology (Yamada, T., Alpers, D.H., Owyang, C., Powell, D.W., and Silverstein, F.E., eds.), Vol. 1, pp. 383–404, J.B. Lippincott, Philadelphia.

  6. Dunne, C., O’Mahony, L., Murphy, L., Thornton, G., Morrissey, D., O’Halloran, S., Feeney, M., Flynn, S., Fitzgerald, G., Daly, C., et al. (2001) In vitro Selection Criteria for Probiotic Bacteria of Human Origin: Correlation with in vivo Findings, Am. J. Clin. Nutr. 73, 386S-392S.

    PubMed  CAS  Google Scholar 

  7. Dashkevicz, M.P., and Feighner, S.D. (1989) Development of a Differential Medium for Bile Salt Hydrolase-Active Lactobacillus spp., Appl. Environ. Microbiol. 55, 11–16.

    PubMed  CAS  Google Scholar 

  8. Gaull, G.E., and Wright, C.E. (1987) Taurine Conjugated Bile Acids Protect Human Cells in Culture, Adv. Exp. Med. Biol. 217, 61–67.

    PubMed  CAS  Google Scholar 

  9. Van Der Meer, R., Termont, D.S.M.L., and De Vries, H.T. (1991) Differential Effects of Calcium Ions and Calcium Phosphate on Cytotoxicity of Bile Acids, Am. J. Physiol. 260, G142-G147.

    PubMed  Google Scholar 

  10. Van Der Meer, R., Welberg, J.W.M., Kuipers, F., Kleibeuker, J.H., Mulder, N.H., Termont, D.S.M.L., Vonk, R.J., De Vries, H.T., and De Vries, E.G.E. (1990) Effects of Supplemental Dietary Calcium on the Intestinal Association of Calcium, Phosphate and Bile Acids, Gastroenterology 99, 1653–1659.

    PubMed  Google Scholar 

  11. Shindo, K., Yamazaki, R., Mizuno, T., Shionoiri, H., and Sugiyama, M. (1989) The Deconjugation Ability of Bacteria Isolated from the Jejunal Fluids in the Blind Loop Syndrome with High 14CO2 Excretion—Using the Breath Analysis Technique and Thin-Layer Chromatography, Life Sci. 45, 2275–2283.

    Article  PubMed  CAS  Google Scholar 

  12. Tandon, B.N., Tandon, R.K., Satpathy, B.K., and Shrinivas (1977) Mechanism of Malabsorption in Giardiasis: A Study of Bacterial Flora and Bile Salt Deconjugation in Upper Jejunum, Gut 18, 176–181.

    PubMed  CAS  Google Scholar 

  13. Tandon, B.N., Bansal, R., Kapur, B.M., and Shrinivas (1980) A Study of Malabsorption in Intestinal Tuberculosis: Stagnant Loop Syndrome, Am. J. Clin. Nutri. 33, 244–250.

    CAS  Google Scholar 

  14. Yousef, I.M., Perwiz, S., Lamireau, T., and Tuchweber, B. (2003) Urinary Bile Acid Profile in Children with Inborn Errors of Bile Acid Metabolism and Chronic Cholestasis: Screening Technique Using Electronspray Tandem Mass-Spectroscopy, Med. Sci. Monit 9, MT21-MT23.

    PubMed  CAS  Google Scholar 

  15. Owen, R.W., Thompson, M.H., Hill, M.J., Wilpart, M., Mainguet, P., and Roberfroid, M. (1987) The Importance of the Ratio of Lithocholic Acid to Deoxycholic Acid in Large Bowel Carcinogenesis, Nutr. Cancer 9, 67–71.

    PubMed  CAS  Google Scholar 

  16. Imray, C.H., Radley, S., and Davis, A. (1992) Faecal Unconjugated Bile Acids in Patients with Colorectal Cancer or Polyps, Gut 33, 1239–1245.

    PubMed  CAS  Google Scholar 

  17. Owen, R.W., Dodo, M., Thompson, M.H., and Hill, M.J. (1987) Faecal Steroids and Colorectal Cancer, Nutr. Cancer 9, 73–80.

    Article  PubMed  CAS  Google Scholar 

  18. Owen, R.W., Henly, P.J., Thompson, M.H., and Hill, M.J. (1986) Steroids and Cancer: Faecal Bile Acid Screening for Early Detection of Cancer Risk, J. Steroid Biochem. 24, 391–394.

    Article  PubMed  CAS  Google Scholar 

  19. De Boever, P., Wouters, R., and Verschaeve, L. (2000) Protective Effect of the Bile Salt Hydrolase-Active Lactobacillous reuteri Against Bile Salt Cytotoxicity, Appl. Microbiol. Biotechnol. 53, 709–714.

    Article  PubMed  Google Scholar 

  20. Wildgrube, H.J., Stockhausen, H., Petri, J., Fussel, U., and Lauer, H. (1986) Naturally Occurring Conjugated Bile Acids, Measured by High Performance Liquid Chromatography, in Human, Dog, and Rabbit Bile, J. Chromatogr. 353, 207–213.

    Article  PubMed  CAS  Google Scholar 

  21. Bloch, C.A., and Watkins, J.B. (1978) Determination of Conjugated Bile Acids in Human Bile and Duodenal Fluid by Reverse-Phase High-Performance Liquid Chromatography, J. Lipid Res. 19, 510–513.

    PubMed  CAS  Google Scholar 

  22. Tietz, P.S., Thistle, J.L., Miller, L.J., and LaRusso, N.F. (1984) Development and Validation of a Method for Measuring the Glycine and Taurine Conjugates of Bile Acids in Bile by High-Performance Liquid Chromatography, J. Chromatogr. 336, 249–257.

    PubMed  CAS  Google Scholar 

  23. Perwaiz, S., Tuchweber, B., Mignault, D., Gilat, T., and Yousef, I.M. (2001) Determination of Bile Acids in Biological Fluids by Liquid Chromatography-Electrospray Tandem Mass Spectrometry, J. Lipid Res. 42, 114–119.

    PubMed  CAS  Google Scholar 

  24. Budai, K., and Javitt, N.B. (1997) Bile Acid Analysis in Biological Fluids: A Novel Approach, J. Lipid Res. 38, 1906–1912.

    PubMed  CAS  Google Scholar 

  25. Guldutuna, S., You, T., Kurts, W., and Leuschner, U. (1993) High-Performance Liquid Chromatographic Determination of Free and Conjugated Bile Acids in Serum, Liver Biopsies, Bile, Gastric Juice and Feces by Fluorescene Labeling, Clin. Chim. Acta 214, 195–207.

    Article  PubMed  CAS  Google Scholar 

  26. Sequeira, S.S., Parkes, H.J., Ellul, J.P.M., and Murphy, G.M. (1995) In vitro Determination by 1H-NMR Studies That Bile with Shorter Nucleation Times Contain Cholesterol-Enriched Vesicles, Biochim. Biophys. Acta 1256, 360–366.

    PubMed  Google Scholar 

  27. Jones, M.L., Chen, H., Ouyang, W., Metz, T., and Prakash, S. (2003) Methods for Bile Acid Determination by High Performance Liquid Chromatography, J. Med. Sci. 23, 277–280.

    Google Scholar 

  28. Mim, D., and Hercules, D. (2004) Quantification of Bile Acids Directly from Plasma by MALDI-TOF-MS, Anal. Bioanal. Chem. 378, 1322–1326.

    Article  CAS  Google Scholar 

  29. Lindon, J.C., Holmes, E., and Nicholson, J.K. (2004) Metabonomics and Its Role in Drug Development and Disease Diagnosis, Expert Rev. Mol. Diagn. 4, 189–199.

    Article  PubMed  CAS  Google Scholar 

  30. Lindon, J.C., Holmes, E., and Nicholson, J.K. (2004) So What’s the Deal with Metabonomics? Anal. Chem. 75, 384A-391A.

    Google Scholar 

  31. Ijare, O.B., Somashekar, B.S., Nagana Gowda, G.A., Sharma, A., Kapoor, V.K., and Khetrapal, C.L. (2005) Quantification of Glycine and Taurine Conjugated Bile Acids in Human Bile Using 1H NMR Spectroscopy, Magn. Reson. Med. 53, 1441–1446.

    Article  PubMed  CAS  Google Scholar 

  32. Materhous, D.V., Barnes, S., and Muccio, D.D. (1985) Nuclear Magnetic Resonance Spectroscopy of Bile Acids. Development of Two-Dimensional NMR Methods for the Elucidation of Proton Resonance Assignments for Five Common Hydroxylated Bile Acids, and Their Parent Bile Acid, 5β-Cholanoic Acid, J. Lipid Res. 26, 1068–1078.

    Google Scholar 

  33. Small, D.M., Penkell, S.A., and Chapman, D. (1969) Studies on Simple and Mixed Bile Salt Micelles by Nuclear Magnetic Resonance Spectroscopy, Biochim. Biophys. Acta 176, 178–189.

    PubMed  CAS  Google Scholar 

  34. Maili Liu, R., Farrant, D., Lindon, J.C., and Nicholson, J.K. (1995) Two-Dimensional 1H−1H and 13C−1H Maximum-Quantum Correlation NMR Spectroscopy with Application to the Assignment of the NMR Spectra of the Bile Salt Sodium Taurocholate, Magn. Reson. Chem. 33, 212–219.

    Article  Google Scholar 

  35. Leibfritz, D., and Roberts, J.D. (1973) Nuclear Magnetic Resonance Spectroscopy. Carbon-13 Spectra of Cholic Acids and Hydrocarbons Included in Sodium Desoxycholate Solutions J. Am. Chem. Soc. 95, 4996–5003.

    Article  PubMed  CAS  Google Scholar 

  36. Dominguez C., Kreuzer, C.S., Bornet, O., Kerfelec, B., Chapus, C., and Guerlesquin, F. (2000) Interactions of Bile Salt Micelles and Colipase Studied Through Intermolecular nOes, FEBS Lett. 482, 109–112.

    Article  PubMed  CAS  Google Scholar 

  37. Bernes, S., and Geckle, J.M. (1982) High Resolution Nuclear Magnetic Resonance Spectroscopy of Bile Salts: Individual Proton Assignments for Sodium Cholate in Aqueous Solution at 400 MHz, J. Lipid Res. 23, 161–170.

    Google Scholar 

  38. Campredon, M., Quiroa, V., Thevand, A., Allouche, A., and Pouzard, G. (1986) NMR Studies of Bile Acid Salts: 2D NMR Studies of Aqueous and Methanolic Solutions of Sodium Cholate and Deoxycholate, Magn. Reson. Chem. 24, 624–629.

    Article  CAS  Google Scholar 

  39. Nagana Gowda, G.A. (2001) One-Dimensional Pulse Technique for Detection of Quaternary Carbons, Magn. Reson. Chem. 39, 581–585.

    Article  Google Scholar 

  40. Yang, D., Xu, X., and Ye, C. (1992) Application of HMQC to the Measurement of J(H, H) Homonuclear Coupling Constants, Magn. Reson. Chem. 30, 711–715.

    Article  CAS  Google Scholar 

  41. Goto, J., Mano, N., and Goto, T. (2004) Development of Highly Selective Analytical Systems for Biological Substances Using Chromatography Combined with Mass Spectroscopy—With Reference to Bio-analytical Studies of Bile Acids, Chromatography 25, 1–8.

    CAS  Google Scholar 

  42. Commodari, F., Sclavos, G., Ibrahimi, S., Khiat, A., and Boulanger, Y. (2005) Comparison of 17β-Estradiol Structures from X-ray Diffraction and Solution NMR, Magn. Reson. Chem. 43, 444–450.

    Article  PubMed  CAS  Google Scholar 

  43. Ciuffreda, P., Casati, S., and Manzocchi, A. (2004) Complete 1H and 13C NMR Spectral Assignment of 17-Hydroxy Epimeric Sterols with Planar A or A and B Rings, Magn. Reson. Chem. 42, 360–363.

    Article  PubMed  CAS  Google Scholar 

  44. Sebag, A.B., Hanson, R.N., Forsyth, D.A., and Lee, C.Y. (2003) Conformational Studies of Novel Estrogen Receptor Ligands by 1D and 2D NMR Sepctroscopy and Computational Methods, Magn. Reson. Chem. 41, 246–252.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Nagana Gowda.

About this article

Cite this article

Ijare, O.B., Somashekar, B.S., Jadegoud, Y. et al. 1H and 13C NMR characterization and stereochemical assignments of bile acids in aqueous media. Lipids 40, 1031–1041 (2005). https://doi.org/10.1007/s11745-005-1466-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1466-1

Keywords

Navigation