Skip to main content
Log in

A molecular dynamics study of an archaeal tetraether lipid membrane: Comparison with a dipalmitoylphosphatidylcholine lipid bilayer

  • Articles
  • Published:
Lipids

Abstract

Molecular dynamics simulations of an archaeal membrane made up of bipolar tetraether lipids and a dipalmitoylphosphatidylcholine (DPPC) lipid membrane were performed and compared for the first time. The simulated archaeal membrane consists of a pure monolayer of asymmetrical lipids, analogous to the main polar lipid [MPL; Swain, M., Brisson, J.-R., Sprott, G.D., Cooper, F.P., and Patel, G.B., (1997) Identification of β-1-Gulose as the Sugar moiety of the Main Polar Lipid of Thermoplasma acidophilum, Biochim. Biophys. Acta 1345, 56–64] found in T. acidophilum, an extremophile archaeal organism. This simulated membrane lipid contains two cyclopentane rings located on one of the two aliphatic chains of the lipid. The archaeal membrane is simulated at 62°C, slightly above the optimal growth temperature of T. acidophilum. We compared the organization of this tetraether lipid monolayer with a DPPC bilayer simulated at 50°C, both of them being modeled in a partially hydrated state. Our results assess the singularity of the tetrather lipid organization, in particular the influence of the spanning structure on the molecular ordering within the archaeal membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPPC:

dipalmitoylphosphatidylcholine

MPL:

main polar lipid

References

  1. Sotomayor, M., and Schulten, K. (2004) Molecular Dynamics Study of Gating in the Mecanosensitive Channel of Small Conductance MscS, Biophys. J. 87, 3050–3065.

    Article  PubMed  CAS  Google Scholar 

  2. Nagle, J.F., and Tristram-Nagle, S. (2000) Lipid Bilayer Structure, Curr. Opin. Struct. Biol. 10, 474–480.

    Article  PubMed  CAS  Google Scholar 

  3. Hanford, M.J., and Peeples, T.L. (2002) Archaeal Tetraether Lipids: Unique Structures and Applications, Appl. Biochem. Biotechnol. 97, 45–62.

    Article  PubMed  CAS  Google Scholar 

  4. Gliozzi, A., Relini, A., and Chong, P.L.G. (2002) Structure and Permeability Properties of Biomimetic Membranes of Bolaform Archaeal Tetraether Lipids, J. Membr. Sci. 206, 131–147.

    Article  CAS  Google Scholar 

  5. Bakowsky, U., Rothe, U., Antonopoulos, E., Martini, T., Henkel, L., and Freisleben, H.J. (2000) Monomolecular Organization of the Main Tetraether Lipid from Thermoplasma acidophilum at the Water-Air Interface, Chem. Phys. Lipids 105, 31–42.

    Article  PubMed  CAS  Google Scholar 

  6. Jarrell, H.C., Zukotynski, K.A., and Sprott, G.D. (1998) Lateral Diffusion of the Total Polar Lipids from Thermoplasma acidophilum in Multilamellar Liposomes, Biochim. Biophys. Acta 1369, 259–266.

    Article  PubMed  CAS  Google Scholar 

  7. Kenneth, M.M., Jr., and Roux, B. (1996) Biological Membranes: A Molecular Perspective from Computation and Experiment, Birkhäuser, Boston.

    Google Scholar 

  8. de Rosa, M., Gambacorta, A., and Gliozzi, A. (1986) Structure. Biosynthesis, and Physicochemical Properties of Archaebacterial Lipids, Microbiol. Rev. 50, 70–80.

    PubMed  Google Scholar 

  9. de Rosa, M., Gambacorta, A., and Nicolaus, B. (1983) A New Type of Cell Membrane, in Thermophilic Archaebacteria, Based on Bipolar Ether Lipids, J. Membr. Sci. 16, 287–294.

    Article  Google Scholar 

  10. Morii, H., and Koga, Y. (1994) Asymmetrical Topology of Diether- and Tetraether-Type Polar Lipids in Membranes of Methanobacterium thermoautotrophicum Cells, J. Biol. Chem. 269, 10492–10497.

    PubMed  CAS  Google Scholar 

  11. Woese, C.R., Kandler, O., and Wheelis, M.L. (1990) Towards a Natural System of Organisms: Proposal for the Domains Archaea, Bacteria, and Eucarya, Proc. Natl. Acad. Sci. USA 87, 4576–4579.

    Article  PubMed  CAS  Google Scholar 

  12. Darlant, G., Brock, T.D., Samsonoff, W., and Conti, S.F. (1970) A Thermophilic, Acidophilic Mycoplasma Isolated from a Coal Refuse Pile, Science 170, 1416–1418.

    Article  Google Scholar 

  13. van de Vossenberg, J.L.C.M., Driessen, A.J.M., and Konings, W.N. (1998) The Essence of Being Extremophilic: The Role of the Unique Archaeal Membrane Lipids, Extremophiles, 2, 163–170.

    Article  PubMed  Google Scholar 

  14. Albers, S.V., van de Vossenberg, J.L.C.M., Driessen, A.J.M., and Konings, W.N. (2000) Adaptations of the Archaeal Cell Membrane to Heat Stress, Front. Biosci. 5, 813–820.

    Google Scholar 

  15. Swain, M., Brisson, J.R., Sprott, G.D., Cooper, F.P., and Patel, G.B. (1997) Identification of β-l-Gulose as the Sugar Moiety of the Main Polar Lipid of Thermoplasma acidophilum, Biochim. Biophys. Acta 1345, 56–64.

    PubMed  CAS  Google Scholar 

  16. Uda, I., Sugai, A., Itoh, Y.H., and Itoh, T. (2001) Variation in Molecular Species of Polar Lipids from Thermoplasma acidophilum Depends on Growth Temperature, Lipids 36, 103–105.

    Article  PubMed  CAS  Google Scholar 

  17. de Rosa, M., Morana, A., Riccio, A., Gambacorta, A., Trincone, A., and Incani, O. (1994) Lipids of the Archaea: A New Tool for Bioelectronics, Biosens. Bioelectron. 9, 669–675.

    Article  Google Scholar 

  18. Gambacorta, A., Gliozzi, A., and de Rosa, M. (1995) Archaeal Lipids and Their Biotechnological Applications, World J. Microbiol. Biotechnol. 11, 115–131.

    Article  CAS  Google Scholar 

  19. Benvegnu, T., Brard, M., and Plusquellec, D. (2004) Archaeabacteria Bipolar Lipid Analogues: Structure, Synthesis and Lyotropic Properties, Curr. Opin. Colloid Interf. Sci. 8, 469–479.

    Article  CAS  Google Scholar 

  20. Gabriel, J.L., and Chong, P.L.G. (2000) Molecular Modeling of Archaebacterial Bipolar Tetraether Lipid Membranes, Chem. Phys. Lipids 105, 193–200.

    Article  PubMed  CAS  Google Scholar 

  21. DL_POLY 2.12 (2001) c/o Department for Computation and Information, CCLRC Daresbury Laboratory, Washington, United Kingdom.

  22. Schlenkrich, M., Brickmann, J., MacKerell, A.D., Jr., and Karplus, M. (1996) An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications, in Biological Membranes: A Molecular Perspective from Computation and Experiment, pp. 1–31, Birkhäuser, Boston.

    Google Scholar 

  23. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L. (1983) Comparison of Simple Potential Functions for Simulating Liquid Water, J. Chem. Phys. 79, 926–935.

    Article  CAS  Google Scholar 

  24. Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J.C. (1977) Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes, J. Comput. Phys. 23, 327–341.

    Article  CAS  Google Scholar 

  25. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G. (1995) A Smooth Particle Mesh Ewald Method, J. Chm. Phys. 103, 8577–8593.

    Article  CAS  Google Scholar 

  26. Hoover, W.G. (1985) Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A. 31, 1695–1697.

    Article  PubMed  Google Scholar 

  27. Lin, J.H., Baker, N.A., and McCammon, J.A. (2002) Bridging Implicit and Explicit Solvent Approaches for Membrane Electrostatics, Biophys. J. 83, 1374–1379.

    PubMed  CAS  Google Scholar 

  28. Saiz, L., and Klein, M.L. (2002) Electrostatic Interactions in a Neutral Model Phospholipid Bilayer by Molecular Dynamics Simulations, J. Chem. Phys. 116, 3052–3057.

    Article  CAS  Google Scholar 

  29. Strobl, C., Six, L., Heckmann, K., Henkel, B., and Ring, K. (1985) Physicochemical Characterization of Tetraether Lipids from Thermoplasma acidophilum II. Film Balance Studies on the Monomolecular Organization of the Main Glycophospholipid in Monofilms, Z. Naturforsch. 40c, 219–222.

    CAS  Google Scholar 

  30. Elferink, M.G.L., de Wit, J.G., Demel, R., Driessen, A.J.M., and Konings, W.N. (1992) Functional Reconstitution of Membrane Proteins in Monolayer Liposomes from Bipolar Lipids of Sulfologus acidocaldarius, J. Biol. Chem. 267, 1375–1381.

    PubMed  CAS  Google Scholar 

  31. Nagle, J.F., Zhang, R., Tristram-Nagle, S., Sun, W., Petrache, H.I., and Suter, R.M. (1996) X-ray Structure Determination of Fully Hydrated L Alpha Phase Dipalmitoylphosphatidylcholine Bilayers, Biophys. J. 70, 1419–1431.

    PubMed  CAS  Google Scholar 

  32. Chiu, S.W., Clark, M.M., Jakobsson, E., Subramaniam, S., and Scott, H.L. (1999) Optimization of Hydrocarbon Chain Interaction Parameters: Application to the Simulation of Fluid Phase Lipid Bilayers, J. Phys. Chem. B 103, 6323–6327.

    Article  CAS  Google Scholar 

  33. Feller, S.E., and Mackerrell, A.D. Jr. (2000) An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids, J. Phys. Chem. B 104, 7510–7515.

    Article  CAS  Google Scholar 

  34. Dannenmuller, O., Arakawa, K., Eguchi, T., Kakinuma, K., Blanc, S., Albrecht, A.M., Schmutz, M., Nakatani, Y., and Ourisson, G. (2000) Membrane Properties of Archaeal Macrocyclic Diether Phospholipids, Chem. Eur. J. 6, 645–654.

    Article  CAS  Google Scholar 

  35. Marrink, S.J. (1994) Permeation of Small Molecules Across Lipid Membranes: A Molecular Dynamics Study, Ph.D. Thesis, University of Groningen, The Netherlands.

    Google Scholar 

  36. Mathai, J.C., Sprott, G.D., and Zeidel, M.L. (2001) Molecular Mechanisms of Water and Solute Transport Across Archaebacterial Lipid Membranes, J. Biol. Chem. 276, 27266–27271.

    Article  PubMed  CAS  Google Scholar 

  37. Baba, T., Minamikawa, H., Hato, M., and Handa, T. (2001) Hydration and Molecular Motions in Synthetic Phytanyl-Chained Glycolipid Vesicle Membranes, Biophys. J. 81, 3377–3386.

    PubMed  CAS  Google Scholar 

  38. Ernst, M., Freisleben, H.J., Antonopoulos, E., Henkel, L., Mlekusch, W., and Reibnegger, G. (1998) Calorimetry of Archaeal Tetraether Lipid—Indication of a Novel Metastable Thermotropic Phase in the Main Phospholipid from Thermoplasma Acidophilum Cultured at 59°C, Chem. Phys. Lipids 94, 1–12.

    Article  CAS  Google Scholar 

  39. Kao, Y.L., Chang, E.L., and Chong, P.L.G. (1992) Unusual Pressure Dependence of the Lateral Motion of Pyrene-Labeled Phosphatidylcholine in Bipolar Lipid Vesicles, Biochem. Biophys. Res. Commun. 188, 1241–1246.

    Article  PubMed  CAS  Google Scholar 

  40. Khan, T.K., and Chong, P.L.G. (2000) Studies of Archaebacterial Bipolar Tetraether Liposomes by Perylene Fluorescence, Biophys. J. 78, 1390–1399.

    Article  PubMed  CAS  Google Scholar 

  41. Douliez, J.P., Léonard, A., and Dufourc, E.J. (1995) Restatement of Order Parameters in Biomembranes—Calculation of C-C Bond Order Parameters from C-D Quadrupolar Splittings, Biophys. J. 68, 1727–1739.

    PubMed  CAS  Google Scholar 

  42. Nicolas, J.P., and de Souza, N.R. (2004) Molecular Dynamics Study of n-Hexane-Water Interface: Towards a Better Understanding of the Liquid-Liquid Interfacial Broadening, J. Chem. Phys. 120, 2464–2469.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Nicolas, J.P. A molecular dynamics study of an archaeal tetraether lipid membrane: Comparison with a dipalmitoylphosphatidylcholine lipid bilayer. Lipids 40, 1023–1030 (2005). https://doi.org/10.1007/s11745-005-1465-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1465-2

Keywords

Navigation