Skip to main content
Log in

Changes of the transcriptional and fatty acid profiles in response to n−3 fatty acids in SH-SY5Y neuroblastoma cells

  • Articles
  • Published:
Lipids

Abstract

Synthesis of docosahexaenoic acid (DHA) from its metabolic precursors contributes to membrane incorporation of this FA within the central nervous system. Although cultured neural cells are able to produce DHA, the membrane DHA contents resulting from metabolic conversion do not match the high values of those resulting from supplementation with preformed DHA. We have examined whether the DHA precursors downregulate the incorporation of newly formed DHA within human neuroblastoma cells. SH-SY5Y cells were incubated with gradual doses of α-linolenic acid (α-LNA), EPA, or docosapentaenoic acid (DPA), and the incorporation of DHA into ethanolamine glycerophospholipids was analyzed as a reflection of synthesizing activity. The incorporation of EPA, DPA, and preformed DHA followed a dose-response saturating curve, whereas that of DHA synthesized either from α-LNA, EPA, or DPA peaked at concentrations of precursors below 15–30 μM and sharply decreased with higher doses. The mRNA encoding for six FA metabolism genes were quantified using real-time PCR. Two enzymes of the peroxisomal β-oxidation, L-bifunctional protein and peroxisomal acyl-CoA oxidase, were expressed at lower levels than fatty acyl-CoA ligase 3 (FACL3) and Δ6-desaturase (Δ6-D). The Δ6-D mRNA slightly increased between 16 and 48 h of culture, and this effect was abolished in the presence of 70 μM EPA. In contrast, the EPA treatment resulted in a time-dependent increase of FACL3 mRNA. The terminal step of DHA synthesis seems to form a “metabolic bottleneck,” resulting in accretion of EPA and DPA when the precursor concentration exceeds a specific threshold value. We conclude that the critical precursor-concentration window of responsiveness may originate from the low basal expression level of peroxisomal enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α-LNA:

α-linolenic acid

AOX:

peroxisomal acyl-CoA oxidase

ChoGpl:

choline glycerophospholipids

Ct:

threshold cycle number

DBP:

D-bifunctional protein

Δ6-D:

Δ6-desaturase

DHA:

docosahexaenoic acid (22∶6n−3)

DMA:

dimethylacetals

DPA:

docosapentaenoic acid (22∶5n−3)

ELOVL4:

brain fatty acid elongase-4

EPA:

eicosapentaenoic acid (20∶5n−3)

ER:

endoplasmic reticulum

EtnGpl:

ethanolamine-glycerophospholipids

FACL3:

fatty acyl-CoA ligase 3

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

LBP:

L-bifunctional protein

PlsEtn:

1-O-alkyl-1′-enyl-2-acyl-sn-glycero-3-phosphoethanolamine

PPAR:

peroxisome proliferator-activated receptors

PtdEtn:

phosphatidylethanolamine

PtdSer:

phosphatidylserine

RT-PCR:

reverse-transcription polymerase chain reaction

THA:

tetracosahexaenoic acid (24∶6n−3)

References

  1. Lauritzen, L., Hansen, H.S., Jùrgensen, M.H., and Michaelsen, K.F. (2001) The Essentiality of Long Chain n−3 Fatty Acids in Relation to Development and Function of the Brain and Retina, Prog. Lipid Res. 40, 1–94.

    Article  PubMed  CAS  Google Scholar 

  2. Alessandri, J.M., Guesnet, P., Vancassel, S., Astorg, P., Denis, I., Langelier, B., Aïd, S., Poumès-Ballihaut, C., Champeil-Potokar, G., and Lavialle, M. (2004) Polyunsaturated Fatty Acids in the Nervous System: Evolution of Concepts and Nutritional Implications Throughout Life, Reprod. Nutr. Dev. 44, 509–538.

    Article  PubMed  CAS  Google Scholar 

  3. Thies, F., Pillon, C., Moliere, P., Lagarde, M., and Lecerf, J. (1994) Preferential Incorporation of sn-2 LysoPC DHA over Unesterified DHA in the Young Rat Brain, Am. J. Physiol. 36, R1273–R1279.

    Google Scholar 

  4. Bazan, N.G., Gordon, W.C., and Rodriguez de Turco, E.B. (1992) Docosahexaenoic Acid Uptake and Metabolism in Photoreceptors: Retinal Conservation by an Efficient Retinal Pigment Epithelial Cell-Mediated Recycling Process, Adv. Exp. Med. Biol. 318, 295–306.

    PubMed  CAS  Google Scholar 

  5. Voss, A., Reinhart, M., Sankarappa, S., and Sprecher, H. (1991) The Metabolism of 7,10,13,16,19-Docosapentaenoic Acid to 4,7,10,13,16,19-Docosahexaenoic Acid in Rat Liver Is Independent of a Δ4-Desaturase, J. Biol. Chem. 266, 19995–20000.

    PubMed  CAS  Google Scholar 

  6. Sprecher, H., Luthria, D.L., Mohammed, B.S., and Baykousheva, S.P. (1995) Reevaluation of the Pathways for the Biosynthesis of Polyunsaturated Fatty Acids, J. Lipid Res. 36, 2471–2477.

    PubMed  CAS  Google Scholar 

  7. Ferdinandusse, S., Denis, S., Mooijer, P.A.W., Zhang, Z., Reddy, J.K., Spector, A.A., and Wanders, R.J.A. (2001) Identification of the Peroxisomal β-Oxidation Enzymes Involved in the Biosynthesis of Docosahexaenoic Acid, J. Lipid Res. 42, 1987–1995.

    PubMed  CAS  Google Scholar 

  8. Su, H.M., Moser, A.B., Moser, H.W., and Watkins, P.A. (2001) Peroxisomal Straight-Chain Acyl-CoA Oxidase and D-Bifunctional Protein Are Essential for the Retroconversion Step in Docosahexaenoic Acid Synthesis, J. Biol. Chem. 276, 38115–38120.

    PubMed  CAS  Google Scholar 

  9. Makrides, M., Neumann, M.A., Byard, R.W., Simmer, K., and Gibson, R.A. (1994) Fatty Acid Composition of Brain, Retina, and Erythrocytes in Breast- and Formula-Fed Infants, Am. J. Clin. Nutr. 60, 189–194.

    PubMed  CAS  Google Scholar 

  10. Su, H.M., Bernardo, L., Mirmiran, M., Ma, X.H., Corso, T.N., Nathanielsz, P.W., and Brenna, J.T. (1999) Bioequivalence of Dietary α-Linolenic and Docosahexaenoic Acids as Sources of Docosahexaenoate Accretion in Brain and Associated Organs of Neonatal Baboons, Pediatr Res. 45, 87–93.

    PubMed  CAS  Google Scholar 

  11. Cunnane, S.C., Francescutti, V., Brenna, J.T., and Crawford, M.A. (2000) Breast-Fed Infants Achieve a Higher Rate of Brain and Whole Body Docosahexaenoate Accumulation Than Formula-Fed Infants Not Consuming Dietary Docosahexaenoate, Lipids 35, 105–111.

    Article  PubMed  CAS  Google Scholar 

  12. Putnam, J.C., Carlson, S.E., DeVoe, P.W., and Barness, L.A. (1982) The Effect of Variations in Dietary Fatty Acids on the Fatty Acid Composition of Erythrocyte Phosphatidylcholine and Phosphatidylethanolamine in Human Infants, Am. J. Clin. Nutr. 36, 106–114.

    PubMed  CAS  Google Scholar 

  13. Jensen, C.L., Chen, H., Fraley, J.K., Anderson, R.E., and Heird, W.C. (1996) Biochemical Effects of Dietary Linoleic/α-Linolenic Acid Ratio in Term Infants, Lipids 31, 107–113.

    Article  PubMed  CAS  Google Scholar 

  14. Ponder, D.L., Innis, S.M., Benson, J.D., and Siegman, J.S. (1992) Docosahexaenoic Acid Status of Term Infants Fed Breast Milk or Infant Formula Containing Soy Oil or Corn Oil, Pediatr. Res. 32, 683–688.

    PubMed  CAS  Google Scholar 

  15. Burdge, G.C., Jones, A.E., and Wootton, S.A. (2002) Eicosapentaenoic and Docosapentaenoic Acids Are the Principal Products of α-Linolenic Acid Metabolism in Young Men, Br. J. Nutr. 88, 355–363.

    Article  PubMed  CAS  Google Scholar 

  16. Burdge, G.C. (2004) α-Linolenic Acid Metabolism in Men and Women: Nutritional and Biological Implications, Curr. Opin. Clin. Nutr. Metab. Care 7, 137–144.

    PubMed  CAS  Google Scholar 

  17. Pawlosky, R.J., Hibbeln, J.R., Novotny, J.A., and Salem, N., Jr. (2001) Physiological Compartmental Analysis of {α}-Linolenic Acid Metabolism in Adult Humans, J. Lipid Res. 42, 1257–1265.

    PubMed  CAS  Google Scholar 

  18. Hoffman, D.R., DeMar, J.C., Heird, W.C., Birch, D.G., and Anderson, R.E. (2001) Impaired Synthesis of DHA in Patients with X-Linked Retinitis Pigmentosa, J. Lipid Res. 42, 1395–1401.

    PubMed  CAS  Google Scholar 

  19. Pawlosky, R.J., Hibbeln, J.R., Lin, Y., Goodson, S., Riggs, P., Sebring, N., Brown, G.L., and Salem, N., Jr. (2003) Effects of Beef- and Fish-based Diets on the Kinetics of n−3 Fatty Acid Metabolism in Human Subjects, Am. J. Clin. Nutr. 77, 565–572.

    PubMed  CAS  Google Scholar 

  20. Salem, N., Jr., Lin, Y., Brenna, T.J., and Pawlosky, R.J. (2003) α-Linolenic Acid Conversion Revisited, PUFA Newslett., http://www.fatsoflife.com/article.asp?i=a&id=162 (accessed January 2005).

  21. Poumes-Ballihaut, C., Langelier, B., Houlier, F., Alessandri, J.M., Durand, G., Latge, C., and Guesnet, P. (2001) Comparative Bioavailability of Dietary α-Linolenic and Docosahexaenoic Acids in the Growing Rat, Lipids 36, 793–800.

    Article  PubMed  CAS  Google Scholar 

  22. Burdge, G.C., and Wootton, S.A. (2003) Conversion of α-Linolenic Acid to Palmitic, Palmitoleic, Stearic and Oleic Acids in Men and Women, Prostaglandins Leukot. Essent. Fatty Acids 69, 283–290.

    Article  PubMed  CAS  Google Scholar 

  23. Burdge, G.C., Finnegan, Y.E., Minihane, A.M., Williams, C.M., and Wootton, S.A. (2003) Effect of Altered Dietary n−3 Fatty Acid Intake upon Plasma Lipid Fatty Acid Composition, Conversion of [13C]α-Linolenic Acid to Longer-Chain Fatty Acids and Partitioning Towards β-Oxidation in Older Men, Br. J. Nutr. 90, 311–321.

    Article  PubMed  CAS  Google Scholar 

  24. Cunnane, S.C. (2001) New Developments in α-Linolenate Metabolism with Emphasis on the Importance of β-Oxidation and Carbon Recycling, World Rev. Nutr. Diet. 88, 178–183.

    Article  PubMed  CAS  Google Scholar 

  25. Sinclair, A.J., Attar-Bashi, N.M., and Li, D. (2002) What Is the Role of α-Linolenic Acid for Mammals? Lipids 37, 1113–1123.

    PubMed  CAS  Google Scholar 

  26. Ferdinandusse, S., Denis, S., Dacremont, G., and Wanders, R.J.A. (2003) Studies on the Metabolic Fate of n−3 Polyunsaturated Fatty Acids, J. Lipid Res. 44, 1992–1997.

    Article  PubMed  CAS  Google Scholar 

  27. Moore, S.A., Yoder, E., Murphy, S., Dutton, G.R., and Spector, A.A. (1991) Astrocytes, Not Neurons, Produce Docosahexaenoic Acid (22∶6n−3) and Arachidonic Acid, J. Neurochem. 56, 518–524.

    Article  PubMed  CAS  Google Scholar 

  28. Williard, D.E., Harmon, S.D., Kaduce, T.L., Preuss, M., Moore, S.A., Robbins, M.E.C., and Spector, A.A. (2001) Docosahexaenoic Acid Synthesis from n−3 Polyunsaturated Fatty Acids in Differentiated Rat Brain Astrocytes, J. Lipid Res. 42, 1368–1376.

    PubMed  CAS  Google Scholar 

  29. Williard, D.E., Harmon, S.D., Kaduce, T.L., and Spector, A.A. (2002) Comparison of 20-, 22-, and 24-Carbon n−3 and n−6 Polyunsaturated Fatty Acid Utilization in Differentiated Rat Brain Astrocytes, Prostaglandins Leukot. Essent. Fatty Acids 67, 99–104.

    Article  PubMed  CAS  Google Scholar 

  30. Innis, S.M., and Dyer, R.A. (2002). Brain Astrocyte Synthesis of Docosahexaenoic Acid from n−3 Fatty Acids Is Limited at the Elongation of Docosapentaenoic Acid, J. Lipid Res. 43, 1529–1536.

    Article  PubMed  CAS  Google Scholar 

  31. Chen, H., Ray, J., Scarpino, V., Acland, G.M., Aguirre, G.D., and Anderson, R.E. (1999) Synthesis and Release of Docosahexaenoic Acid by the RPE Cells of prcd-Affected Dogs, Invest. Ophthalmol. Vis. Sci. 40, 2418–2422.

    PubMed  CAS  Google Scholar 

  32. Hyman, B.T., and Spector, A.A. (1981) Accumulation of n−3 Polyunsaturated Fatty Acids Cultured Human Y79 Retinoblastoma Cells, J. Neurochem. 37, 60–69.

    Article  PubMed  CAS  Google Scholar 

  33. Yorek, M.A., Bohnker, R.R., Dudley, D.T., and Spector, A.A. (1984) Comparative Utilization of n−3 Polyunsaturated Fatty Acids by Cultured Human Y-79 Retinoblastoma Cells, Biochim. Biophys. Acta 795, 277–285.

    PubMed  CAS  Google Scholar 

  34. Marzo, I., Alava, M.A., Pineiro, A., and Naval, J. (1996) Biosynthesis of Docosahexaenoic Acid in Human Cells: Evidence That Two Different Δ6-Desaturase Activities May Exist, Biochim Biophys Acta 1301, 263–272.

    PubMed  Google Scholar 

  35. Alessandri, J.M., Poumès-Ballihaut, C., Langelier, B., Perruchot, M.H., Raguénez, G., Lavialle, M., and Guesnet, P. (2003) Incorporation of Docosahexaenoic Acid into Nerve Membrane Phospholipids: Bridging the Gap Between Animals and Cultured Cells, Am. J. Clin. Nutr. 78, 702–710.

    PubMed  CAS  Google Scholar 

  36. Goustard-Langelier, B., Alessandri, J.M., Raguenez, G., Durand, G., and Courtois, Y. (2000) Phospholipid Incorporation and Metabolic Conversion of n−3 Polyunsaturated Fatty Acids in the Y79 Retinoblastoma Cell Line, J. Neurosci. Res. 60, 678–685.

    Article  PubMed  CAS  Google Scholar 

  37. Langelier, B., Furet, J.P., Perruchot, M.H., and Alessandri, J.M. (2003) Docosahexaenoic Acid Membrane Content and mRNA Expression of acyl-CoA Oxidase and of Peroxisome Proliferator-Activated Receptor-δ Are Modulated in Y79 Retinoblastoma Cells Differently by Low and High Doses of α-Linolenic Acid, J. Neurosci. Res. 74, 134–141.

    Article  PubMed  CAS  Google Scholar 

  38. Labarca, C., and Paigen, K. (1980) A Simple, Rapid, and Sensitive DNA Assay Procedure, Anal. Biochem. 102, 344–352.

    Article  PubMed  CAS  Google Scholar 

  39. Foretz, M., Foufelle, F., and Ferre, P. (1999) Polyunsaturated Fatty Acids Inhibit Fatty Acid Synthase and Spot-14-Protein Gene Expression in Cultured Rat Hepatocytes by a Peroxidative Mechanism, Biochem. J. 341, 371–376.

    Article  PubMed  CAS  Google Scholar 

  40. Chang, M.C., Bell, J.M., Purdon, A.D., Chikhale, E.G., and Grange, E. (1999). Dynamics of Docosahexaenoic Acid Metabolism in the Central Nervous System: Lack of Effect of Chronic Lithium Treatment, Neurochem. Res. 24, 399–406.

    Article  PubMed  CAS  Google Scholar 

  41. Chen, Q., and Nilsson, A. (1993) Desaturation and Chain Elongation of n−3 and n−6 Polyunsaturated Fatty Acids in the Human CaCo-2 Cell Line, Biochim. Biophys. Acta 1166, 193–201.

    PubMed  CAS  Google Scholar 

  42. Dias, V.C., and Parsons, H.G. (1995) Modulation in Δ9, Δ6 and Δ5 Fatty Acid Desaturase Activity in the Human Intestinal Caco-2 Cell Line, J. Lipid Res. 36, 552–563.

    PubMed  CAS  Google Scholar 

  43. Reddy, J.K., Goel, S.K., Nemali, M.R., Carrino, J.J., Laffler, T.G., Reddy, M.K., Sperbeck, S.J., Osumi, T., Hashimoto, T., Lalwani, N.D., Rao, M.S. (1986) Transcription Regulation of Peroxisomal Fatty Acyl-CoA Oxidase and Enoyl-CoA Hydratase/3-Hydroxyacyl-CoA Dehydrogenase in Rat Liver by Peroxisome Proliferators, Proc. Natl. Acad. Sci. U.S.A. 83, 1747–1751.

    Article  PubMed  CAS  Google Scholar 

  44. Dreyer, C., Krey, G., Keller, H., Givel, F., Helftenbein, G., and Wahli, W. (1992) Control of the Peroxisomal β-Oxidation Pathway by a Novel Family of Nuclear Hormone Receptors, Cell 68, 879–887.

    Article  PubMed  CAS  Google Scholar 

  45. Tugwood, J.D., Issemann, I., Anderson, R.G., Bundell, K.R., McPheat, W.L., and Green, S. (1992) The Mouse Peroxisome Proliferator Activated Receptor Recognizes a Response Element in the 5′ Flanking Sequence of the Rat Acyl CoA Oxidase Gene, EMBO J. 11, 433–439.

    PubMed  CAS  Google Scholar 

  46. Zhang, B., Marcus, S.L., Sajjadi, F.G., Alvares, K., Reddy, J.K., Subramani, S., Rachubinski, R.A., and Capone, J.P. (1992) Identification of a Peroxisome Proliferator-Responsive Element Upstream of the Gene Encoding Rat Peroxisomal Enoyl-CoA Hydratase/3-Hydroxyacyl-CoA Dehydrogenase, Proc. Natl. Acad. Sci. U.S.A. 89, 7541–7545.

    Article  PubMed  CAS  Google Scholar 

  47. Marcus, S.L., Miyata, K.S., Zhang, B., Subramani, S., Rachubinski, R.A., and Capone, J.P. (1993) Diverse Peroxisome Proliferator-Activated Receptors Bind to the Peroxisome Proliferator-Responsive Elements of the Rat Hydratase/Dehydrogenase and Fatty Acyl-CoA Oxidase Genes but Differentially Induce Expression, Proc. Natl. Acad. Sci. U.S.A. 90, 5723–5727.

    Article  PubMed  CAS  Google Scholar 

  48. Forman, B.M., Chen, J., and Evans, R.M. (1997) Hypolipidemic Drugs, Polyunsaturated Fatty Acids, and Eicosanoids Are Ligands for Peroxisome Proliferator-Activated Receptors α and δ, Proc. Natl. Acad. Sci. U.S.A. 94, 4312–4317.

    Article  PubMed  CAS  Google Scholar 

  49. Pawar, A., and Jump, D.B. (2003) Unsaturated Fatty Acid Regulation of Peroxisome Proliferator-Activated Receptor α Activity in Rat Primary Hepatocytes, J. Biol. Chem. 278, 35931–35939.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Alessandri.

About this article

Cite this article

Langelier, B., Alessandri, JM., Perruchot, MH. et al. Changes of the transcriptional and fatty acid profiles in response to n−3 fatty acids in SH-SY5Y neuroblastoma cells. Lipids 40, 719–728 (2005). https://doi.org/10.1007/s11745-005-1435-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1435-8

Keywords

Navigation