Skip to main content
Log in

Regiospecific determination of short-chain triacylglycerols in butterfat by normal-phase HPLC with on-line electrospray-tandem mass spectrometry

  • Method
  • Published:
Lipids

Abstract

This study uses normal-phase HPLC with on-line positive ion electrospray mass spectrometry (ESI-MS) to obtain quantitative compositional data on both synthetic and butterfat short-chain TAG. The product ion tandem MS of standards averaged 11.1 times lower in abundance of the ion formed by cleavage of FA from the sn-2-position for the pairs of regioisomers in the TAG classes: L/L/S-L/S/L and L/S/S-S/L/S, where L denotes long and S short acyl chain (C2−C6). The molar correction factors, determined for 42 regioisomeric pairs of short-chain TAG of 20 randomized mixture of standards, differed by 1.4–80% as the ratios varied between 0.217 and 5.847. Butterfat TAG were resolved into four fractions on short flash chromatography grade silica gel columns. Pairs of regioisomers in the TAG classes L/S/S-S/L/S with predominance of L/S/S isomers and the sole regioisomers in the TAG classes L/L(M)/S were identified by tandem MS, where M denotes either 8∶0 or 10∶0 acyl chain. The total proportion of L/L(M)/S isomers was estimated at 34.7 and that of L/S/S-S/L/S at 1.0 mol%, including a small proportion of S/S/S. In contrast to previous work, the present data indicate the presence of a small proportion of butyric and caproic acids in the sn-1-position. The overall distribution of the FA in the short-chain TAG of butterfat, calculated from direct MS measurements, was consistent with the results of indirect determinations based on stereospecific analyses of total butterfat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACN:

number of acyl group carbons

APCI:

atmospheric pressure chemical ionization

CID:

collision-induced dissociation

EIC:

extracted ion chromatogram

ESI:

electrospray ionization

ISTD:

internal standard

L:

long-chain acyl (C12−C20)

M:

medium-chain acyl (C8, C10)

MCF:

molar correction factor

MS/MS:

tandem MS

NICI:

negative ion chemical ionization

NP:

normal-phase

R S :

resolution

S:

short-chain acyl (C2−C6)

References

  1. Larsson, K. (1986) Physical properties—Structural and Physical Characteristics, in The Lipid Handbook (Gunstone, F.D., Harwood, J.L., and Padley, F.D., eds.), pp. 321–376, Chapman & Hall, London.

    Google Scholar 

  2. Kuksis, A. (2000) Biochemistry of Glycerolipids and Formation of Chylomicrons, in Fat Digestion and Absorption (Christophe, A., and Vriese, S.D., eds.), pp. 119–180, AOCS Press, Champaign.

    Google Scholar 

  3. Mu, H., and Høy, C.-E. (2000) Effects of Different Medium-Chain Fatty Acids on Intestinal Absorption of Structured Triacylglycerols, Lipids 35, 83–89.

    Article  PubMed  CAS  Google Scholar 

  4. Breckenridge, W.C., and Kuksis, A. (1968) Specific Distribution of Short-Chain Fatty Acids in Molecular Distillates of Bovine Milk Fat, J. Lipid Res. 9, 388–393.

    PubMed  CAS  Google Scholar 

  5. Marai, L., Breckenridge, W.C., and Kuksis, A. (1969) Specific Distribution of Fatty Acids in the Milk Fat Triglycerides of Goat and Sheep, Lipids 4, 562–570.

    PubMed  CAS  Google Scholar 

  6. Pitas, R.E., Sampugna, J., and Jensen, R.G. (1967) Triglyceride Structure of Cows' Milk Fat: I. Preliminary Observations on the Fatty Acid Compositions of Positions 1, 2, and 3, J. Dairy Sci. 50, 1332–1336.

    CAS  Google Scholar 

  7. Myher, J.J., Kuksis, A., Marai, L., and Sandra, P. (1988) Identification of the More Complex Triacylglycerols in Bovine Milk Fat by Gas Chromatography-Mass Spectrometry Using Polar Capillary Columns, J. Chromatogr. 452, 93–118.

    Article  PubMed  CAS  Google Scholar 

  8. Kuksis, A., Marai, L., and Myher, J.J. (1991) Reversed-Phase Liquid Chromatography-Mass Spectrometry of Complex Mixtures of Natural Triacylglycerols with Chloride-Attachment Negative Chemical Ionization J. Chromatogr. 588, 73–87.

    Article  CAS  Google Scholar 

  9. Laakso, P., and Manninen, P. (1997) Identification of Milk Fat Triacylglycerols by Capillary Supercritical Fluid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry, Lipids 32, 1285–1295.

    Article  PubMed  CAS  Google Scholar 

  10. Kalo, P., and Kemppinen, A. (1993) Mass Spectrometric Identification of Triacylglycerols of Enzymatically Modified Butterfat Separated on a Polarizable Phenylmethylsilicone Column, J. Am. Oil Chem. Soc. 70, 1209–1217.

    CAS  Google Scholar 

  11. Marai, L., Kuksis, A., and Myher, J.J. (1994) Reversed-Phase Liquid Chromatography-Mass Spectrometry of the Uncommon Triacylglycerol Structures Generated by Randomization of Butteroil, J. Chromatogr. 672, 87–99.

    Article  CAS  Google Scholar 

  12. Spanos, G.A., Schwartz, R.B., van Breemen, R.B., and Huang, C.-H. (1995) High-Performance Liquid Chromatography with Light-Scattering Detection and Desorption Chemical-Ionization Tandem Mass Spectrometry of Milk Fat Triacylglycerols, Lipids 30, 85–90.

    PubMed  CAS  Google Scholar 

  13. Mottram, H.R., and Evershed, R.P. (2001) Elucidation of the Composition of Bovine Milk Fat Triacylglycerols Using High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionisation Mass Spectrometry, J. Chromatogr. 926, 239–253.

    Article  CAS  Google Scholar 

  14. Ryhage, R., and Stenhagen, E. (1960) Mass Spectrometry in Lipid Research, J. Lipid Res. 1, 361–390.

    PubMed  CAS  Google Scholar 

  15. Myher, J.J., Kuksis, A., Marai, L., and Manganaro, F. (1984) Quantitation of Natural Triacylglycerols by Reversed-Phase Liquid Chromatography with Direct Liquid Inlet Mass Spectrometry, J. Chromatogr. 283, 289–301.

    Article  PubMed  CAS  Google Scholar 

  16. Kallio, H., and Currie, G. (1993) Analysis of Low Erucic Acid Turnip Rapeseed Oil (Brassica campestris) by Negative Ion Chemical Ionization Tandem Mass Spectrometry: A Method Giving Information on the Fatty Acid Composition in Positions sn-2 and sn-1/3 of Triacylglycerols, Lipids, 28, 207–215.

    CAS  Google Scholar 

  17. Kallio, H., and Rua, P. (1994) Distribution of the Major Fatty Acids of Human Milk Between sn-2, and sn-1,3 Positions of Triacylglycerols, J. Am. Oil Chem. Soc. 71, 985–992.

    CAS  Google Scholar 

  18. Kurvinen, J.-P., Mu, H., Kallio, H., Xu, X., and H_y, C.E. (2001) Regioisomers of Octanoic Acid-Containing Structured Triacylglycerols Analyzed by Tandem Mass Spectrometry using Ammonia Negative Ion Chemical Ionization, Lipids 36, 1377–1382.

    PubMed  CAS  Google Scholar 

  19. Kurvinen, J.-P., Rua, P., Sjovall, O., and Kallio, H. (2001) Software (MSPECTRA) for Automatic Interpretation of Triacylglycerol Molecular Mass Distribution Spectra and Collision Induced Dissociation Product Ion Spectra Obtained by Ammonia Negative Ion Chemical Ionuization Mass Spectrometry, Rapid Commun. Mass Spectrom. 15, 1084–1091.

    Article  PubMed  CAS  Google Scholar 

  20. Yli-Jokipii, K.M., Schwab, U.S., Tahvonen, R.L., Kurvinen, J.-P., Mykkänen, H., and Kallio, H.P.T. (2003) Chylomicron and VLDL TAG Structures and Postprandial Lipid Response Induced by Lard and Modified Lard, Lipids 38, 693–703.

    PubMed  CAS  Google Scholar 

  21. Mottram, H.R., and Evershed, R.P. (1996) Structure Analysis of Triacylglycerol Positional Isomers Using Atmospheric Pressure Chemical Ionisation Mass Spectrometry, Tetrahedron Lett. 37, 8593–8596.

    Article  CAS  Google Scholar 

  22. Mottram, H.R., Woodbury, S.E., and Evershed, R.P. (1997) Identification of Triacylglycerol Positional Isomers Present in Vegetable Oils by High Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry, Rapid Commun. Mass Spectrom. 11, 1240–1252.

    Article  CAS  Google Scholar 

  23. Mottram, H.R., Crossman, Z.M., and Evershed, R.P. (2001) Regiospecific Characterisation of the Triacylglycerols in Animal Fats Using High Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionisation Mass Spectrometry, Analyst 126, 1018–1024.

    Article  PubMed  CAS  Google Scholar 

  24. Jakab, A., Jablonkai, I., and Forgács, E. (2003) Quantification of the Ratio of Positional Isomer of Dilinoleoyl-Oleoyl Glycerols in Vegetable Oils, Rapid Commun. Mass Spectrom. 17, 2295–2302.

    Article  PubMed  CAS  Google Scholar 

  25. Duffin, K.L., Henion, J.D., and Shieh, J.J. (1991) Electrospray and Tandem Mass Spectrometric Characterization of Acylglycerol Mixtures That Are Dissolved in Nonpolar Solvents, Anal. Chem. 63, 1781–1788.

    Article  PubMed  CAS  Google Scholar 

  26. Cheng, C., Gross, M.L., and Pittenauer, E. (1998) Complete Structural Elucidation of Triacylglycerols by Tandem Sector Mass Spectrometry, Anal Chem. 70, 4417–4426.

    Article  PubMed  CAS  Google Scholar 

  27. Han, X., and Gross, R.W. (2001) Quantitative Analysis and Molecular Species Fingerprinting of Triacylglyceride Molecular Species Directly from Lipid Extracts of Biological Samples by Electrospray Ionization Tandem Mass Spectrometry, Anal. Biochem. 295, 88–100.

    Article  PubMed  CAS  Google Scholar 

  28. Hvattum, E. (2001) Analysis of Triacylglycerols with Non-Aqueous Reversed-Phase Liquid Chromatography and Positive Ion Electrospray Tandem Mass Spectrometry, Rapid Commun. Mass Spectrom. 15, 187–190.

    Article  PubMed  CAS  Google Scholar 

  29. Dorschel, C.A. (2002) Characterization of the TAG of Peanut Oil by Electrospray LC-MS-MS, J. Am. Oil Chem. Soc. 79, 749–753.

    CAS  Google Scholar 

  30. Marzilli, L.A., Fay, L.B., Dionisi, F., and Vouros, P. (2003) Structural Characterization of Triacylglycerols Using Electrospray Ionization-MSn Ion-Trap MS, J. Am. Oil Chem. Soc. 80, 195–202.

    CAS  Google Scholar 

  31. Kalo, P., Kemppinen, A., Ollilainen, V., and Kuksis, A. (2003) Analysis of Regioisomers of Short-Chain Triacylglycerols by Normal-Phase Liquid Chromatography-Electrospray Tandem Mass Spectrometry, Int. J. Mass Spectrom. 229, 167–180.

    Article  CAS  Google Scholar 

  32. Hsu, F.-F., and Turk, J. (1999) Structural Characterization of Triacylglycerols as Lithiated Adducts by Electrospray Ionization Mass Spectrometry Using Low-Energy Collisionally Activated Dissociation on a Triple Stage Quadrupole Instrument, J. Am. Soc. Mass Spectrom. 10, 587–599.

    Article  PubMed  CAS  Google Scholar 

  33. Kim, Y.H., So, K.-Y., Limb, J.K., Jhon, G.-J., and Han, S.-Y. (2000) Identification of Triacylglycerols Containing Two Short-Chain Fatty Acids at sn-2 and sn-3 Positions from Bovine Udder by Fast Atom Bombardment Tandem Mass Spectrometry, Rapid Commun. Mass Spectrom. 14, 2230–2237.

    Article  PubMed  CAS  Google Scholar 

  34. Segall, S.D., Artz, W.E., Raslan, D.S., Ferraz, V.P., and Takahashi, J.A. (2004) Ouricuri (Syagrus coronata) Triacylglycerol Analysis Using HPLC and Positive Ion Electrospray Tandem MS, J. Am. Oil Chem. Soc. 81, 143–149.

    CAS  Google Scholar 

  35. Byrdwell, W.C., Emken, E.A., Neff, W.E., and Adlof, R.O. (1996) Quantitative Analysis of Triglycerides Using Atmospheric Pressure Chemical Ionization-Mass Spectrometry, Lipids 31, 919–935.

    Article  PubMed  CAS  Google Scholar 

  36. Byrdwell, W.C., and Neff, W.E. (1996) Analysis of Genetically Modified Canola Varieties by Atmospheric Pressure Chemical Ionization Mass Spectrometric and Flame Ionization Detection, J. Liq. Chrom. Rel. Technol. 19, 2203–2225.

    CAS  Google Scholar 

  37. Kemppinen, A., and Kalo, P. (1998) Analysis of sn-1(3)- and sn-2-Short-Chain Acyl Isomers of Triacylglycerols in Butteroil by Gas-Liquid Chromatography, J. Am. Oil Chem. Soc. 75, 91–100.

    CAS  Google Scholar 

  38. Itabashi, Y., Myher, J.J., and Kuksis, A. (1993) Determination of Positional Distribution of Short-Chain Fatty Acids in Bovine Milk Fat on Chiral Columns, J. Am. Oil Chem. Soc. 70, 1177–1181.

    CAS  Google Scholar 

  39. Myher, J.J., Kuksis, A., and Marai, L. (1993) Identification of the Less Common Isologous Short-Chain Triacylglycerols in the Most Volatile 2.5% Molecular Distillate of Butter Oil, J. Am. Oil Chem. Soc. 70, 1183–1191.

    CAS  Google Scholar 

  40. Gresti, J., Bugaut, M., Maniongui, C., and Bezard, J. (1993) Composition of Molecular Species of Triacylglycerols in Bovine Milk Fat, J. Dairy Sci. 76, 1850–1869.

    Article  PubMed  CAS  Google Scholar 

  41. Christie, W.W., and Clapperton, J.L. (1982) Structures of the Triglycerides of Cows' Milk Fortified Milks (Including Infant Formulae), and Human Milk, J. Soc. Dairy Technol. 35, 22–24.

    CAS  Google Scholar 

  42. Parodi, P.W. (1982) Positional Distribution of Fatty Acids in Triglycerides from Milk of Several Species of Mammals, Lipids 17, 437–442.

    PubMed  CAS  Google Scholar 

  43. Kalo, P., Kemppinen, A., and Kilpeläinen, I. (1996) Determination of Positional Distribution of Butyryl Groups in Milkfat Triacylglycerols, Triacylglycerol Mixtures, and Isolated Positional Isomers of Triacylglycerols by Gas Chromatography and 1H Nuclear Magnetic Resonance Spectroscopy, Lipids 31, 331–336.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kalo.

About this article

Cite this article

Kalo, P., Kemppinen, A., Ollilainen, V. et al. Regiospecific determination of short-chain triacylglycerols in butterfat by normal-phase HPLC with on-line electrospray-tandem mass spectrometry. Lipids 39, 915–928 (2004). https://doi.org/10.1007/s11745-004-1314-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1314-3

Keywords

Navigation