Skip to main content
Log in

Lipase-catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)-diricinolein

  • Methods
  • Published:
Lipids

Abstract

The objective of this study was to find the optimal parameters for lipase-catalyzed methanolysis of triricinolein to produce 1,2(2,3)-diricinolein. Four different immobilized lipases were tested, Candida antarctica type B (CALB), Rhizomucor miehei (RML), Pseudomonas cepacia (PCL), and Penicillium roquefortii (PRL). n-Hexane and diisopropyl ether (DIPE) were examined as reaction media at three different water activities (a w), 0.11, 0.53, and 0.97. The consumption of triricinolein and the formation of 1,2(2,3)-diricinolein, methyl ricinoleate, and ricinoleic acid were followed for up to 48 h. PRL gave the highest yield of 1,2(2,3)-diricinolein. Moreover, this lipase showed the highest specificity for the studied reaction, i.e., high selectivity for the reaction with triricinolein but low for 1,2(2,3)-diricinolein. Recoveries of 93 and 88% DAG were obtained using PRL in DIPE at a w of 0.11 and 0.53, respectively. Further, NMR studies showed that a higher purity of the 1,2(2,3)-isomer vs. the 1,3-isomer was achieved at higher a w (88% at a w=0.53), compared to lower a w (71% at a w=0.11). The DAG obtained was acylated by the DAG acyltransferase from Arabidopsis thaliana. Therefore, this enzymatic product is a useful enzyme substrate for lipid biosynthesis. Accordingly, the use of PRL in DIPE at a w 0.53 is considered optimal for the synthesis of 1,2(2,3)-diricinolein from triricinolein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AtDGAT:

cDNA coding DGAT cloned from Arabidopsis thaliana, Columbia

a w :

water activity

CALB:

Candida antarctica type B lipase

DGAT:

DAG acyltransferase

DIPE:

dusopropyl ether

ESI-MS:

electrospray ionization MS

NP-HPLC:

normal-phase HPLC

PCL:

Pseudomonas cepacia lipase

PRL:

Penicillium roquefortii lipase

RML:

Rhizomucor miehei lipase

RRO:

sn-1,2-diricinoleoyl-sn-3-oleoyl TAG

RT-PCR:

reverse-transcriptase PCR

References

  1. Lin, J.-T., Woodruff, C.L., Lagouche, O.J., McKeon, T.A., Stafford, A.E., Goodrich-Tanrikulu, M., Singleton, J.A., and Haney, C.A. (1998) Biosynthesis of Triacylglycerols Containing Ricinoleate in Castor Microsomes Using 1-Acyl-2-oleoyl-sn-glycero-3-phosphocholine as the Substrate of Oleoyl-12-hydroxylase, Lipids 33, 59–69.

    Article  PubMed  CAS  Google Scholar 

  2. Lin, J.-T., Turner, C., Liao, L.P., and McKeon, T.A. (2003) Identification and Quantification of the Molecular Species of Acylglycerols in Castor Oil by HPLC Using ELSD, J. Liq. Chromatogr. Rel. Technol. 26, 759–766.

    Google Scholar 

  3. Caupin, H.-J. (1997) Products from Castor Oil—Past, Present, and Future, in Lipid Technologies and Applications (Gunstone, F.D., and Padley, F.B., eds.), pp. 787–795, Marcel Dekker, New York.

    Google Scholar 

  4. Lord, J.M., Roberts, L.M., and Robertus, J.D. (1994) Ricin: Structure. Mode of Action, and Some Current Applications. FASEB J. 8, 201–208.

    PubMed  CAS  Google Scholar 

  5. Nagao, T., Watanabe, H., Goto, N., Onizawa, K., Taguchi, H., Matsuo, N., Yasukawa, T., Tsushima, R., Shimasaki, H., and Itakura, H. (2000) Dietary Diacylglycerol Suppresses Accumulation of Body Fat Compared to Triacylglycerol in Men: A Double-Blind Controlled Trial, J. Nutr. 130, 792–797.

    PubMed  CAS  Google Scholar 

  6. Lambert, D.M. (2000) Rationale and Applications of Lipids as Prodrug Carriers, Eur. J. Pharm. Sci. 11, S15-S27.

    Article  PubMed  CAS  Google Scholar 

  7. Fureby, A.M., Tian, L., Adlercreutz, P., and Mattiasson, B. (1997) Preparation of Diglycerides by Lipase-Catalyzed Alcoholysis of Triglycerides, Enzyme Microb. Technol. 20, 198–206.

    Article  CAS  Google Scholar 

  8. Vogel, G., and Browse, J. (1995) Preparation of Radioactively Labeled Synthetic sn-1.2-Diacylglycerols for Studies of Lipid Metabolism, Anal. Biochem. 224, 61–67.

    Article  PubMed  CAS  Google Scholar 

  9. Gitlesen, T., Bauer, M., and Adlercreutz, P. (1997) Adsorption of Lipase on Polypropylene Powder, Biochim. Biophys. Acta 1345, 188–196.

    PubMed  CAS  Google Scholar 

  10. Halling, P.J. (1992) Salt Hydrates for Water Activity Control with Biocatalysis in Organic Media, Biotechnol. Tech. 6, 271–276.

    Article  CAS  Google Scholar 

  11. Urban, P., Werckreichhart, D., Teutsch, H.G., Durst, F., Regnier, S., Kazmaier, M., and Pompon, D. (1994) Characterization of Recombinant Plant Cinnamate 4-Hydroxylase Produced in Yeast—Kinetic and Spectral Properties of the Major Plant P450 of the Phenylpropanoid Pathway, Eur. J. Biochem. 222, 843–850.

    Article  PubMed  CAS  Google Scholar 

  12. Cases, S., Smith, S.J., Zheng, Y.W., Myers, H.M., Lear, S.R., Sande, E., Novak, S., Collins, C., Welch, C.B., Lusis, et al. (1998) Identification of a Gene Encoding an Acyl CoA:Diacylglycerol Acyltransferase, a Key Enzyme in Triacylglycerol Synthesis, Proc. Natl. Acad. Sci. USA 95, 13018–13023.

    Article  PubMed  CAS  Google Scholar 

  13. McKeon, T.A., Lin, J.T., Goodrich-Tanrikulu, M., and Stafford, A.E. (1997) Ricinoleate Biosynthesis in Castor Microsomes, Ind. Crops Prod. 6, 383–389.

    Article  CAS  Google Scholar 

  14. Lin, J.-T., McKeon, T.A., Goodrich-Tanrikulu, M., and Stafford, A.E. (1996) Characterization of Oleoyl-12-hydroxylase in Castor Microsomes Using the Putative Substrate, 1-Acyl-2-oleoyl-sn-glycero-3-phosphocholine, Lipids 31, 571–577.

    Article  PubMed  CAS  Google Scholar 

  15. Lin, J.-T., Woodruff, C.L., and McKeon, T.A. (1997) Non-aqueous Reversed-Phase High-Performance Liquid Chromatography of Synthetic Triacylglycerols and Diacylglycerols, J. Chromatogr. A 782, 41–48.

    Article  CAS  Google Scholar 

  16. Fureby, A.M., Virto, C., Adlercreutz, P., and Mattiasson, B. (1996) Acyl Group Migrations in 2-Monoolein, Biocatal. Biotransform. 14, 89–111.

    CAS  Google Scholar 

  17. Malcata, F.X., Reyes, H.R., Garcia, H.S., Hill, C.G., Jr., and Amundson, C.H. (1992) Kinetics and Mechanisms of Reactions Catalysed by Immobilized Lipases, Enzyme Microb. Technol. 14, 426–446.

    Article  PubMed  CAS  Google Scholar 

  18. Itabashi, Y., Kukis, A., Marai, L., and Takagi, T. (1990) HPLC Resolution of Diacylglycerol Moieties of Natural Triacylglycerols on a Chiral Phase Consisting of Bonded (R)-(+)-1-(1-naphthyl)Ethylamine, J. Lipid Res. 31, 1711–1717.

    PubMed  CAS  Google Scholar 

  19. Turner, C., Persson, M., Mathiasson, L., Adlercreutz, P., and King, J.W. (2001) Lipase-Catalyzed Reactions in Organic and Supercritical Solvents: Application to Fat-Soluble Vitamin Determination in Milk Powder and Infant Formula, Enzyme Microb. Technol. 29, 111–121.

    Article  CAS  Google Scholar 

  20. Adlercreutz, P. (2000) Biocatalysis in Non-conventional Media, in Applied Biocatalysis (Straathof, A.J.J., and Adlercreutz, P., eds.), pp. 295–316, Harwood Academic, Newark, NJ.

    Google Scholar 

  21. Svensson, I., Wehtje, E., Adlercreutz, P., and Mattiasson, B. (1994) Effects of Water Activity on Reaction Rates and Equilibrium Positions in Enzymatic Esterifications, Biotechnol. Bioeng. 44, 549–556.

    Article  CAS  Google Scholar 

  22. Varian Associates (1962) NMR Spectra Catalog, Varian Associates, Palo Alto, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Turner, C., He, X., Nguyen, T. et al. Lipase-catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)-diricinolein. Lipids 38, 1197–1206 (2003). https://doi.org/10.1007/s11745-003-1179-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1179-5

Keywords

Navigation