Skip to main content
Log in

Chemical and enzymatic transacylation of amide-linked FA of buttermilk gangliosides

  • Articles
  • Published:
Lipids

Abstract

The goal of this work was to alter the composition of amide-linked FA of bovine buttermilk gangliosides, particularly the disialoganglioside GD3, to adjust lipid sources to special food specifications and pharamacological or cosmetic applications. The chemical transacylation of amide-linked FA of buttermilk gangliosides with free arachidic acid (20∶0) by a combination of basic hydrolysis and diethylphosphorylcyanide/triethylamine-catalyzed reacylation was compared to an enzymatic sphingolipid ceramide N-deacylase (EC 3.5.1.23)-catalyzed FA exchange by GC analysis and nano electrospray ionization-MS. The buttermilk predominantly contained the disialoganlioside GD3 and the monosialoganglioside GM3. The heterogeneity of FA that are incorporated into gangliosides, mainly palmitic acid (29.4 wt%), stearic acid (16.9 wt%), oleic acid (17.8 wt%), and myristic acid (8.5 wt%), was effectively altered by both transes-terification techniques. Arachidic acid, which was not integrated into the initial buttermilk gangliosides, was transacylated to total gangliosides with 23.2 wt% (GD3, 6.7 wt%) by the chemical process and with 8.7 wt% (GD3, 13.8 wt%) when catalyzed enzymatically. Mainly behenic acid and lignoceric acid of GD3 were exchanged chemically, and stearic acid was exchanged by the enzymatic process. This observation might depend on hydrolytic sensitivities of amide-linked very long chain saturated FA or specific enzyme subtrate affinities, respectively. Results of chemical hydrolysis indicated there was a risk of sialic acid decomposition and unspecific degradations. Regarding specificity and avoidance of critical agents, the enzymatic transesterification is recommended for industrial-scale production of consumer goods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GD:

disialoganglioside

GM:

monosialoganglioside

HPTLC:

high performance TLC

nano ESI-MSn :

nano electrospray ionization-MS

RT:

retention time

References

  1. Lloyd, K.O., and Furukawa, K. (1998) Biosynthesis and Functions of Gangliosides: Recent Advances, Glycoconj. J. 15, 627–636.

    Article  PubMed  CAS  Google Scholar 

  2. Ebel, F., Schmitt, E., Peter-Katalinic, J., Kniep, B., and Mühlradt, P.F. (1992) Gangliosides: Differentiation Markers for Murine T Helper Lymphocyte Subpopulations TH1 and TH2, Biochemistry 31, 12190–12197.

    Article  PubMed  CAS  Google Scholar 

  3. Natomi, H., Saitoh, T., Iwamori, M., Fukayama, M., and Nagai, Y. (1993) Systemic Analysis of Glycosphingolipids in the Human Gastrointestinal Tract: Enriched Sulfatides with Hydroxylated Longer-Chain Fatty Acids in the Gastric and Duodenal Mucosa, Lipids 28, 737–742.

    PubMed  CAS  Google Scholar 

  4. Merrill, A.H., Jr. (2002) De novo Sphingolipid Biosynthesis: A Necessary but Dangerous Pathway, J. Biol. Chem. 277, 25843–25846.

    Article  PubMed  CAS  Google Scholar 

  5. Vesper, H., Schmelz, E.M., Nikolova-Karakashian, M.N., Dillehay, D.L., Lynch, D.V., and Merrill, A.H., Jr. (1999) Sphingolipids in Food and the Emerging Importance of Sphingolipids to Nutrition, J. Nutr. 129, 1239–1250.

    PubMed  CAS  Google Scholar 

  6. Elias, P.M., and Menon, G.K. (1991) Structural and Lipid Biochemical Correlates of the Epidermal Permeability Barrier, Adv. Lipid Res. 24, 1–26.

    PubMed  CAS  Google Scholar 

  7. Kolstø Otnæss, A.B., Lægreid, A., and Ertresvåg, K. (1983) Inhibition of Enterotoxin from Escherichia coli and Vibrio cholerae by Gangliosides from Human Milk, Infect. Immun. 40, 563–569.

    Google Scholar 

  8. Hakomori, S. (1981) Glycosphingolipids in Cellular Interaction, Differentiation, and Oncogenesis, Annu. Rev. Biochem. 50, 733–764.

    Article  PubMed  CAS  Google Scholar 

  9. Tsui, Z.C., Hou, W.H., Yang, L., and Zhu, Z.M. (1990) Effect of a Cell Differentiation Inducer, Ganglioside GM3, on the Neutral Glycosphingolipid Composition and Cell Membrane Fluidity of a Human Promyelocytic Leukemia Cell Line HL-60, In Vivo 4, 205–208.

    PubMed  CAS  Google Scholar 

  10. Kappel, T., Anken, R.H., Hanke, W., and Rahmann, H. (2000) Gangliosides Affect Membrane-Channel Activities Dependent on Ambient Temperature, Cell. Mol. Neurobiol. 20, 579–590.

    Article  PubMed  CAS  Google Scholar 

  11. Brown, D.A., and London, E. (2000) Structure and Function of Sphingolipid- and Cholesterol-Rich Membrane Rafts J. Biol. Chem. 275, 17221–17224.

    Article  PubMed  CAS  Google Scholar 

  12. Van Meer, G., and Lisman, Q. (2002) Sphingolipid Transport: Rafts and Translocators, J. Biol. Chem. 277, 25855–25858.

    Article  PubMed  Google Scholar 

  13. Perry, D.K., and Hannun, Y.A. (1998) The Role of Ceramide in Cell Signaling, Biochim. Biophys. Acta 1436, 233–243.

    PubMed  CAS  Google Scholar 

  14. Hannun, Y.A., and Obeid, L.M. (2002) The Ceramide-Centric Universe of Lipid-Mediated Cell Regulation: Stress Encounters of the Lipid Kind, J. Biol. Chem. 277, 25847–25850.

    Article  PubMed  CAS  Google Scholar 

  15. Ladisch, S., Hasegawa, A., Li, R., and Kiso, M. (1995) Immuno-suppressive Activity of Chemically Synthesized Gangliosides, Biochemistry 34, 1197–1202.

    Article  PubMed  CAS  Google Scholar 

  16. Bouhours, J.-F., and Bouhours D. (1981) Ceramide Structure of Sphingomyelin from Human Milk Fat Globule Membrane, Lipids 16, 726–731.

    PubMed  CAS  Google Scholar 

  17. Nakano, T., Sugawara, M., and Kawakami, H. (2001) Sialic Acid in Human Milk: Composition and Functions, Acta Paediatr. Taiwan 42, 11–17.

    PubMed  CAS  Google Scholar 

  18. Huang, R.T.C. (1973) Isolation and Characterization of the Gangliosides of Buttermilk, Biochim. Biophys. 306, 82–84.

    CAS  Google Scholar 

  19. Hauttecoeur, B., Sonnino, S., and Ghidoni, R. (1985) Characterization of Two Molecular Species GD3 Ganglioside from Bovine Buttermilk, Biochim. Biophys. Acta 833, 303–307.

    PubMed  CAS  Google Scholar 

  20. Rueda, R., Maldonado, J., Narbona, E., and Gil, A. (1998) Neonatal Dietary Gangliosides, Early Hum. Dev. 53, S135-S147.

    Article  PubMed  CAS  Google Scholar 

  21. Martin, M.J., Martin-Sosa, S., and Hueso, P. (2001) Bovine Milk Gangliosides: Changes in Ceramide Moiety with Stage of Lactation, Lipids 36, 291–298.

    Article  PubMed  CAS  Google Scholar 

  22. Jensen, R.G., Bitman, J., Carslon, S.E., Couch, S.C., Hamosh, M., and Newburg, D.S. (1995) Human Milk Lipids, in Handbook of Milk Composition (Jensen R.G., ed.), pp. 495–542, Academic Press, New York.

    Google Scholar 

  23. Hirabayashi, Y., Kimura, M., Matsumoto, M., Yamamoto, K., Kadowaki, S., and Tochikura, T. (1988) A Novel Glycosphingolipid-Hydrolyzing Enzyme, Glycosphingolipid Ceramide Deacylase, Which Cleaves the Linkage Between the Fatty Acid and Sphingosine Base in Glycosphingolipids, J. Biochem. 103, 1–4.

    PubMed  CAS  Google Scholar 

  24. Kurita, T., Izu, H., Sano, M., Ito, M., and Kato, I. (2000) Enhancement of Hydrolytic Activity of Sphingolipid Ceramide N-Deacylase in the Aqueous-Organic Biphasic System, J. Lipid Res. 41, 846–851.

    PubMed  CAS  Google Scholar 

  25. Ito, M., Kurita, T., and Kita, K. (1995) A Novel Enzyme That Cleaves the N-Acyl Linkage of Ceramides in Various Glycosphingolipids as Well as Sphingomyelin to Produce Their Lyso Forms, J. Biol. Chem. 270, 24370–24374.

    Article  PubMed  CAS  Google Scholar 

  26. Kita, K., Kurita, T., and Ito, M. (2001) Characterization of the Reversible Nature of the Reaction Catalyzed by Sphingolipid Ceramide N-Deacylase. A Novel Form of Reverse Hydrolysis Reaction, Eur. J. Biochem. 268, 592–602.

    Article  PubMed  CAS  Google Scholar 

  27. Anand, J.K., Sadozai, K.K., and Hakomori, S. (1996) A Simple Method for the Synthesis of Ceramides and Radiolabeled Analogues, Lipids 31, 995–998.

    Article  PubMed  CAS  Google Scholar 

  28. Ladisch, S., and Gillard, B. (1985) A Solvent Partition Method for Microscale Ganglioside Purification, Anal. Biochem. 146, 220–231.

    Article  PubMed  CAS  Google Scholar 

  29. Sonnino, S., Kirschner, G., Ghidoni, R., Acquotti, D., and Tettamani, G. (1985) Preparation of GM1 Ganglioside Molecular Species Having Homogeneous Fatty Acid and Long Chain Base Moities, J. Lipid Res. 26, 248–257.

    PubMed  CAS  Google Scholar 

  30. Kadowaki H., Bremer, E.G., Evans, J.E., Jungalwala F.B., and McCluer, R.H. (1983) Acetonitrile-Hydrochloric Acid Hydrolysis of Gangliosides for High Performance Liquid Chromatographic Analysis of Their Long Chain Bases, J. Lipid. Res. 24, 1389–1397.

    PubMed  CAS  Google Scholar 

  31. Williams, M.A., and McCluer, R.H. (1980) The Use of Sep-Pak C18 Cartridges During the Isolation of Gangliosides, J. Neurochem. 35, 266–269.

    PubMed  CAS  Google Scholar 

  32. Müthing, J. (1996) High-Resolution Thin-Layer Chromatography of Gangliosides, J. Chromatogr A. 720, 3–25.

    Article  PubMed  Google Scholar 

  33. Svennerholm, L. (1957) Quantitative Estimation of Sialic Acids, II. A Colorimetric Resorcinol-Hydrochloric Acid Method, Biochim. Biophys. Acta 24, 604–611.

    Article  PubMed  CAS  Google Scholar 

  34. Gazzotti, G., Sonnino, S., and Ghidoni, R. (1985) Normal-Phase High-Performance Liquid Chromatographic Separation of Nonderivatized Ganglioside Mixtures, J. Chromatogr. 348, 371–378.

    Article  PubMed  CAS  Google Scholar 

  35. Lepage, G., and Roy, C.C. (1986) Direct Transesterification of All Classes of Lipids in a One-Step Reaction, J. Lipid Res. 27, 114–120.

    PubMed  CAS  Google Scholar 

  36. Kohn, G., Van Der Ploeg, P., Möbius, M., and Sawatzki, G. (1996) Influence of the Derivatization Procedure on the Results of the Gas Chromatographic Fatty Acid Analysis of Human Milk and Infant Formulae, Z. Ernährungswiss. 35, 226–234.

    Article  PubMed  CAS  Google Scholar 

  37. Hsu, F.F., and Turk, J. (2001) Structural Determination of Glycosphingolipids as Lithiated Adducts by Electrospray Ionization Mass Spectrometry Using Energy Collisional-Activated Dissociation on a Triple Stage Quadrupole Instrument, J. Am. Soc. Mass Spectrom. 12, 61–79.

    Article  PubMed  CAS  Google Scholar 

  38. Ii, T., Ohashi, Y., and Nagai, Y. (1995) Structural Elucidation of Underivatized Gangliosides by Electrospray-Ionization Tandem Mass Spectrometry (ESIMS/MS), Carbohydr. Res. 273, 27–40.

    Article  PubMed  CAS  Google Scholar 

  39. Wilm, M., and Mann, M. (1996) Analytical Properties of the Nanoelectrospray Ion Source, Anal. Chem. 68, 1–8.

    Article  PubMed  CAS  Google Scholar 

  40. Creaser, C.S., and Stygall, J.W. (1998) Recent Developments in Analytical Ion Trap Mass Spectrometry, Trends Anal. Chem. 17, 583–593.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Beermann.

About this article

Cite this article

Beermann, C., Röhrig, AK. & Boehm, G. Chemical and enzymatic transacylation of amide-linked FA of buttermilk gangliosides. Lipids 38, 855–864 (2003). https://doi.org/10.1007/s11745-003-1136-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1136-3

Keywords

Navigation