Skip to main content
Log in

Pharmacological modulation of fatty acid desaturation and of cholesterol biosynthesis in THP-1 cells

  • Articles
  • Published:
Lipids

Abstract

In THP-1 cells, simvastatin decreases, in a concentration-dependent manner, cholesterol synthesis and increases linoleic acid (LA) conversion to its long-chain derivatives, in particular to arachidonic acid, activating Δ6 and Δ5 fatty acid (FA) desaturases. The intermediates in cholesterol synthesis, mevalonate and geranylgeraniol, partially reverse the effects of simvastatin on the LA conversion. The aims of this work were to evaluate: (i) the correlation between cholesterol synthesis and desaturase activity and (ii) the possible involvement of protein isoprenylation in desaturase activity, assessed through pharmacological treatments. THP-1 cells were incubated with [1-14C]LA or with [1-14C]di-homo-γ-linolenic acid (DHGLA) and treated with simvastatin or with curcumin and nicardipine, inhibitors of desaturases. Curcumin was more active than nicardipine in inhibiting LA and DHGLA conversion: 20 μM curcumin, alone or with simvastatin, totally inhibited Δ6 and Δ5 desaturation steps; 10 μM nicardipine only partially inhibited the enzymes, being more active on Δ5 desaturase. Simvastatin treatment decreased the incorporation of acetate in cholesterol (−93.8%) and cholesterol esters (−70.2%), as expected. Curcumin and nicardipine also decreased cholesterol synthesis and potentiated simvastatin. Finally, the isoprenylation inhibitors (perillic acid and GGTI-286) neither affected the conversion of LA nor inhibited the Δ5 desaturase activity. In conclusion, our results indicate that there is no direct relationship between cholesterol synthesis and desaturase activity. In fact, simvastatin decreased cholesterol synthesis and enhanced LA conversion (mainly Δ5 desaturation), whereas curcumin and nicardipin decreased Δ5 desaturation, with a limited effect on cholesterol synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α-LNA:

α-linolenic acid

AA:

arachidonic acid

CE:

cholesterol esters

FC:

free cholesterol

LA:

linoleic acid

LC-PUFA:

long-chain PUFA

PL:

phospholipids

References

  1. Brenner, R.R. (1989) Factors Influencing Fatty Acid Chain Elongation and Desaturation, in The Role of Fats in Human Nutrition (Vergroessen, A.J., and Crawford, M., eds.), 2nd edn., pp. 45–79, Academic Press, London.

    Google Scholar 

  2. Poisson, J.P.G., and Cunnane, S.C. (1991) Long-Chain Fatty Acid Metabolism in Fasting and Diabetes: Relation Between Desaturase Activity and Fatty Acid Composition, J. Nutr. Biochem. 2, 60–70.

    Article  CAS  Google Scholar 

  3. Leikin, A.I., and Brenner, R.R. (1988) In vivo Cholesterol Removal from Liver Microsomes Induces Changes in Fatty Acid Desaturase Activities, Biochim. Biophys. Acta 963, 311–319.

    PubMed  CAS  Google Scholar 

  4. Melin, T., and Nilsson, A. (1997) Δ6-Desaturase and Δ5-Desaturase in Human HepG2 Cells Are Both Fatty Acid Interconversion Rate Limiting and Are Upregulated Under Essential Fatty Acid Deficient Conditions, Prostaglandins Leukotrienes Essent. Fatty Acids 56, 437–442.

    Article  CAS  Google Scholar 

  5. Peluffo, R.O., Nervi, A.M., and Brenner, R.R. (1976) Linoleic Acid Desaturation Activity of Liver Microsomes of Essential Fatty Acid Deficient and Sufficient Rats, Biochim. Biophys. Acta 441, 25–31.

    PubMed  CAS  Google Scholar 

  6. Brenner, R.R. (1990) Endocrine Control of Fatty Acid Desaturation, Biochem. Soc. Trans. 18, 773–775.

    PubMed  CAS  Google Scholar 

  7. Kawashima, Y., Musoh, K., and Kozuka, H. (1990) Peroxisome Proliferators Enhance Linoleic Acid Metabolism in Rat Liver. Increased Biosynthesis of Omega-6 Polyunsaturated Fatty Acids, J. Biol. Chem. 265 9170–9175.

    PubMed  CAS  Google Scholar 

  8. Kawashima, H., Akimoto, K., Jareonkitmongkol, S., Shirasaka, N., and Shimizu, S. (1996) Nicardipine and Nifedipine Inhibit Fatty Acid Desaturases in Rat Liver Microsomes, Biosci. Biotechnol. Biochem. 60, 1672–1676.

    Article  PubMed  CAS  Google Scholar 

  9. Risé, P., Colombo, C., and Galli, C. (1997) Effects of Simvastatin on the Metabolism of Polyunsaturated Fatty Acids and on Glycerolipid, Cholesterol, and de novo Lipid Synthesis in THP-1 Cells, J. Lipid Res. 38, 1299–1307.

    PubMed  Google Scholar 

  10. Shimizu, S., Jareonkitmongkol, S., Kawashima, H., Akimoto, K., and Yamada, H. (1992) Inhibitory Effect of Curcumin on Fatty Acid Desaturation in Mortierella alpina 1S–4 and Rat Liver Microsomes, Lipids 27, 509–512.

    PubMed  CAS  Google Scholar 

  11. Zhang, F.L., and Casey, P.J. (1996) Protein Prenylation: Molecular Mechanisms and Functional Consequences, Annu. Rev. Biochem. 65, 241–269.

    Article  PubMed  CAS  Google Scholar 

  12. Hardcastle, I.R., Rowlands, M.G., Barber, A.M., Grimshaw, R.M., Mohan, M.K., Nutley, B.P., and Jarman, M. (1999) Inhibition of Protein Prenylation by Metabolites of Limonene, Biochem. Pharmacol. 57, 801–809.

    Article  PubMed  CAS  Google Scholar 

  13. Ferri, N., Arnaboldi, L., Orlandi, A., Yokoyama, K., Gree, R., Granata, A., Hachem, A., Paoletti, R., Gelb, M.H., and Corsini, A. (2001) Effect of S(−) Perillic Acid on Protein Prenylation and Arterial Smooth Muscle Cell Proliferation, Biochem. Pharmacol. 62, 1637–1645.

    Article  PubMed  CAS  Google Scholar 

  14. Lerner, E.C., Qian, Y., Hamilton, A.D., and Sebti, S.M. (1995) Disruption of Oncogenic K-Ras4B Processing and Signaling by a Potent Geranylgeranyltransferase I Inhibitor, J. Biol. Chem. 270, 26770–26773.

    Article  PubMed  CAS  Google Scholar 

  15. Tsuchiya, S., Yamabe, M., Yamaguchi, Y., Kobayashi, Y., Konno, T., Toda, K. (1980) Establishment and Characterization of a Human Acute Monocytic Leukemia Cell Line (THP-1), Int. J. Cancer 26, 171–176.

    PubMed  CAS  Google Scholar 

  16. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissue, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  17. Rouser, G., Kritchevsky, G., Yamamoto, A., Simon, G., Galli, C., and Bauman, A.J. (1969) Diethylaminoethyl and Triethylaminoethyl-Cellulose Column Chromatography Procedures for Phospholipids, Glycolipids and Pigments, Methods Enzymol. 14, 785–807.

    Google Scholar 

  18. Hrboticky, N., Tang, L., Zimmer, B., Lux, I., and Weber, P.C. (1994) Lovastatin Increases Arachidonic Acid Levels and Stimulates Thromboxane Synthesis in Human Liver and Monocytic Cell Lines, J. Clin. Invest. 93, 195–203.

    Article  PubMed  CAS  Google Scholar 

  19. Risé, P., Pazzucconi, F., Sirtori, C.R., and Galli, C. (2001) Statins Enhance Arachidonic Acid Synthesis in Hypercholesterolemic Patients, Nutr. Metab. Cardiovasc. Dis. 11, 88–94.

    PubMed  Google Scholar 

  20. van Doormal, J.J., Bos, W.J.W., Muskiet, F.A.J., and Doorenbos, H. (1989) Simvastatin Influences Linoleic Acid Metabolism, Pharm. Weekbl. Sci. 11, 134–135.

    Google Scholar 

  21. Risé, P., Ghezzi, S., and Galli, C. (2003) Relative Potencies of Statins in Reducing Cholesterol Synthesis and Enhancing Linoleic Acid Metabolism, Eur. J. Pharm. 467, 73–75.

    Article  CAS  Google Scholar 

  22. Kamal-Eldin, A., Frank, J., Razdan, A., Tengblad, S., Basu, S., and Vessby, B. (2000) Effects of Dietary Phenolic Compounds on Tocopherol, Cholesterol, and Fatty Acids in Rats, Lipids 35, 427–435.

    Article  PubMed  CAS  Google Scholar 

  23. Watanabe, T., and Suga, T. (1988) Suppression of Clofibrate-Induced Peroxisome Proliferation in Rat Liver by Nicardipine, a Calcium Antagonist, FEBS Lett. 232, 293–297.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Risé.

About this article

Cite this article

Risé, P., Ghezzi, S., Levati, M.G. et al. Pharmacological modulation of fatty acid desaturation and of cholesterol biosynthesis in THP-1 cells. Lipids 38, 841–846 (2003). https://doi.org/10.1007/s11745-003-1134-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1134-5

Keywords

Navigation