Skip to main content
Log in

Effects of dietary phenolic compounds on tocopherol, cholesterol, and fatty acids in rats

  • Published:
Lipids

Abstract

The effects of the phenolic compounds butylated hydroxytoluene (BHT), sesamin (S), curcumin (CU), and ferulic acid (FA) on plasma, liver, and lung concentrations of α- and γ-tocopherols (T), on plasma and liver cholesterol, and on the fatty acid composition of liver lipids were studied in male Sprague-Dawley rats. Test compounds were given to rats ad libitum for 4 wk at 4 g/kg diet, in a diet low but adequate in vitamin E (36 mg/kg of γ-T and 25 mg/kg of α-T) and containing 2 g/kg of cholesterol. BHT significantly reduced feed intake (P<0.05) and body weight and increased feed conversion ratio; S and BHT caused a significant enlargement of the liver (P<0.001), whereas CU and FA did not affect any of these parameters. The amount of liver lipids was significantly lowered by BHT (P<0.01) while the other substances reduced liver lipid concentrations but not significantly. Regarding effects on tocopherol levels, (i) feeding of BHT resulted in a significant elevation (P<0.001) of α-T in plasma, liver, and lung, while γ-T values remained unchanged; (ii) rats provided with the S diet had substantially higher γ-T levels (P<0.001) in plasma, liver, and lung, whereas α-T levels were not affected; (iii) administration of CU raised the concentration of α-T in the lung (P<0.01) but did not affect the plasma or liver values of any of the tocopherols; and (iv) FA had no effect on the levels of either homolog in the plasma, liver, or lung. The level of an unknown substance in the liver was significantly reduced by dietary BHT (P<0.001). BHT was the only compound that tended to increase total cholesterol (TC) in plasma, due to an elevation of cholesterol in the very low density lipoprotein + low density lipoprotein (VLDL+LDL) fraction. S and FA tended to lower plasma total and VLDL+LDL cholesterol concentrations, but the effect for CU was statistically significant (P<0.05). FA increased plasma high density lipoprotein cholesterol while the other compounds reduced it numerially, but not significantly. BHT, CU, and S reduced cholesterol levels in the liver TC (P<0.001) and percentages of TC in liver lipids (P<0.05). With regard to the fatty acid composition of liver lipids, S increased the n-6/n-3 and the 18∶3/20∶5 polyunsaturated fatty acids (PUFA) ratios, and BHT lowered total monounsaturated fatty acids and increased total PUFA (n−6+n−3). The effects of CU and FA on fatty acids were not highly significant. These results suggest some in vivo interactions between these phenolic compounds and tocopherols that may increase the bioavailability of vitamin E and decrease cholesterol in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BHT:

butylated hydroxytoluene

CU:

curcumin

FA:

ferulic acid

GLM:

general linear model

HDL:

high density lipoprotein

HPLC:

high-performance liquid chromatography

LDL:

low density lipoprotein

PUFA:

polyunsaturated fatty acid

S:

sesamin

T:

tocopherol

TC:

total cholesterol

TMS:

trimethylsilyl

TTP:

tocopherol transfer protein

VLDL:

very low density lipoprotein

References

  1. Huang, M.T., and Ferraro, T. (1992) Phenolic Compounds in Food and Cancer Prevention, in Phenolic Compounds in Food and their Effects on Health (II), pp. 8–34, American Chemical Society, Washington, DC.

    Google Scholar 

  2. Henn, T., and Stehle, P. (1998) [Total Phenolics and Antioxidant Activity of Commercial Wines, Teas and Fruit Juices], Ernährungs-Umschau 45, 308–313.

    CAS  Google Scholar 

  3. Bentsath, A., Rusznyak, S., and Szent-Györgi, A. (1936) Vitamin Nature of Flavones, Nature 138, 798.

    CAS  Google Scholar 

  4. Bentsath, A., Rusznyak, S., and Szent-Györgi, A. (1937) Vitamin P, Nature 139, 326–327.

    Google Scholar 

  5. Anonymous (1993) Inhibition of LDL Oxidation by Phenolic Substances in Red Wine: A Clue to the French Paradox?, Nutr. Rev. 51, 185–187.

    Google Scholar 

  6. Staley, L.L., and Mazier, M.J.P. (1999) Potential Explanation for the French Paradox, Nutr. Res. 19, 3–15.

    Article  Google Scholar 

  7. Hoffman, R.M., and Garewal, H.S. (1995) Antioxidants and the Prevention of Coronary Heart Disease, Arch. Intern. Med. 155, 241–246.

    Article  PubMed  CAS  Google Scholar 

  8. Pace-Asciak, C.R., Hahn, R.S., Diamandis, E.P., Soleas, G., and Goldberg, D.M. (1995) The Red Wine Phenolics trans-Resveratrol and Quercetin Block Human Platelet Aggregation and Eicosanoid Synthesis: Implications for Protection Against Coronary Heart Disease, Clin. Chim. Acta 235, 207–219.

    Article  PubMed  CAS  Google Scholar 

  9. Harman, D. (1992) Free Radical Theory of Aging, Mutat. Res. 275, 257–266.

    PubMed  CAS  Google Scholar 

  10. Guyton, K.Z., and Kensler, T.W. (1993) Oxidative Mechanisms in Carcinogenesis, Br. Med. Bull. 49, 523–544.

    PubMed  CAS  Google Scholar 

  11. Bartsch, H., Ohshima, H., and Pignatelli, B. (1988) Inhibitors of Endogenous Nitrosation: Mechanisms and Implications in Human Cancer Prevention, Mutat. Res. 202, 307–324.

    PubMed  CAS  Google Scholar 

  12. Shahidi, F., Janitha, P.K., and Wanasundara, P.D. (1992) Phenolic Antioxidants, Crit. Rev. Food Sci. Nutr. 32, 67–103.

    Article  PubMed  CAS  Google Scholar 

  13. Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C., and Witztum, J.L. (1989) Beyond Cholesterol, Modifications of Low-density Lipoprotein That Increase Its Atherogenity, New Engl. J. Med. 320, 915–924.

    Article  PubMed  CAS  Google Scholar 

  14. Ikeda, I., Imasato, Y., Sasaki, E., Nakayama, M., Nagao, H., Takeo, T., Yayabe, F., and Sugano, M. (1992) Tea Catechins Decrease Micellar Solubility and Intestinal Absorption of Cholesterol in Rats, Biochem. Biophys. Acta 1127, 141–146.

    PubMed  CAS  Google Scholar 

  15. Hirose, N., Inoue, T., Nishihara, K., Sugano, M., Akimoto, K., Shimizu, S., and Yamada, H. (1991) Inhibition of Cholesterol Absorption and Synthesis in Rats by Sesamin, J. Lipid Res. 32, 629–638.

    PubMed  CAS  Google Scholar 

  16. Agarwal, R., Wang, Z.Y., Bik, D.P., and Mukhtar, H. (1991) Nordihydro-Guariaretic Acid, an Inhibitor of Lipoxygenase, Also Inhibits Cytochrome P-450-Mediated Mono-Oxygenase Activity in Rat Epidermal and Hepatic Microsomes, Drug. Metab. Dispos. 19, 620–624.

    PubMed  CAS  Google Scholar 

  17. Alanko, J., Riutta, A., Mucha, T., Vapaatalo, H., and Metsa-Ketela, T. (1993) Modulation of Arachidonic Acid Metabolism by Phenols: Relation to Positions of Hydroxyl Groups and Peroxyl Radical Scavenging Properties, Free Radical-Biol. Med. 14, 19–25.

    Article  CAS  Google Scholar 

  18. Laughton, M.J., Evans, P.J., Moroney, M.A., Hoult, J.R., and Halliwell, B. (1991) Inhibition of Mammalian 5-Lipoxygenase and Cyclo-Oxygenase by Flavonoids and Phenolic Dietary Additives. Relationship to Antioxidant Activity and to Iron Ion-Reducing Ability, Biochem. Pharmacol. 42, 1673–1681.

    Article  PubMed  CAS  Google Scholar 

  19. Mazur, W., and Adlercreutz, H. (1998) Natural and Anthropogenic Environmental Oestrogens: The Scientific Basis for Risk Assessment, Pure Appl. Chem. 70, 1759–1776.

    CAS  Google Scholar 

  20. The ATBC Cancer Prevention Study Group (1994) The Effect of Vitamin E and β-Carotene on the Incidence of Lung Cancer and Other Cancers in Male Smokers, New Engl. J. Med. 330, 1029–1035.

    Article  Google Scholar 

  21. Chan, A.C. (1998) Vitamin E and Atherosclerosis, J. Nutr. 128, 1593–1596.

    PubMed  CAS  Google Scholar 

  22. Takahata, K., Monobe, K., Tada, M., and Weber, P.C. (1998) The Benefits and Risks of n-3 Polyunsaturated Fatty Acids, Biosci. Biotechnol. Biochem. 62, 2079–2085.

    Article  PubMed  CAS  Google Scholar 

  23. Willett, W.C. (1998) The Dietary Pyramid: Does the Foundation Need Repair? Am. J. Clin. Nutr. 68, 218–219.

    PubMed  CAS  Google Scholar 

  24. Pietinen, P., Rimm, E.B., Korhonen, P., Hartman, A.M., Willett, W.C., Albanes, D., and Virtamo, T.J. (1996) Intake of Dietary Fiber and Risk of Coronary Heart Disease in a Cohort of Finnish Men: The α-Tocopherol, β-Carotene Cancer Prevention Study, Circulation 94, 2720–2727.

    PubMed  CAS  Google Scholar 

  25. Yamashita, K., Nohara, Y., Katayama, K., and Namiki, M. (1992) Sesame Seed Lignans and α-Tocopherol Act Synergistically to Produce Vitamin E Activity in Rats, J. Nutr. 122, 2440–2446.

    PubMed  CAS  Google Scholar 

  26. Kamal-Eldin, A., Pettersson, D., and Appelqvist, L.Å. (1995) Sesamin (a compound from sesame oil) Increases Tocopherol Levels in Rats Fed ad libitum, Lipids 30, 499–505.

    PubMed  CAS  Google Scholar 

  27. Yamashita, K., Iizuka, Y., Imai, T., and Namiki, M. (1995) Sesame Seed and Its Lignans Produce Marked Enhancement of Vitamin E Activity in Rats Fed a Low α-Tocopherol Diet, Lipids 30, 1019–1028.

    PubMed  CAS  Google Scholar 

  28. Nardini, M., Natella, F., Gentili, V., Di Felice, M., and Scaccini, C. (1997) Effect of Caffeic Acid Dietary Supplementation on the Antioxidant Defense System in Rat: An in vivo Study, Arch. Biochem. Biophys. 342, 157–160.

    Article  PubMed  CAS  Google Scholar 

  29. Hara, A., and Radin, N.S. (1978) Lipid Extraction of Tissues with a Low-Toxicity Solvent, Anal. Biochem. 90, 420–426.

    Article  PubMed  CAS  Google Scholar 

  30. Seigler, L., and Wu, W.T. (1981) Separation of Serum High-Density Lipoprotein for Cholesterol Determination: Ultracentrifugation vs. Precipitation with Sodium Phosphotungstate and Magnesium Chloride, Clin. Chem. 27, 838–841.

    PubMed  CAS  Google Scholar 

  31. SAS® (1988) User's Guide: Statistics version 6.03 Edition, SAS Institute, Inc., Cary, NC.

    Google Scholar 

  32. Srinivasan, M.R., and Satyanarayana, M.N. (1988) Influence of Capsaicin, Eugenol, Curcumin and Ferulic Acid on Sucrose-Induced Hypertriglyceridemia in Rats, Nutr. Reports Intern. 38, 571–581.

    CAS  Google Scholar 

  33. Kahl, R., and Kappus, H. (1992) [Toxicology of the Synthetic Antoxidants BHA and BHT in Comparison with the Natural Antioxidant Vitamin-E], Z. Lebensm. Unters. Forsch. 196, 329–338.

    Article  Google Scholar 

  34. Takahashi, O., and Hiraga, K. (1981) Effect of Butylated Hydroxytoluene on the Lipid Composition of Rat Liver, Toxicology 22, 161–170.

    Article  PubMed  CAS  Google Scholar 

  35. Sugano, M., Inoue, T., Koba, K., Yoshida, K., Hirose, N., Shinmen, Y., Akimoto, K., and Amachi, T. (1990) Influence of Sesame Lignans on Various Lipid Parameters in Rats, Agric. Biol. Chem. 54, 2669–2673.

    CAS  Google Scholar 

  36. Sugano, M., and Akimoto, K. (1993) Sesamin: A Multifunctional Gift from Nature, J. Chinese Nutr. Soc. 18, 1–11.

    CAS  Google Scholar 

  37. Nakabayashi, A., Kitagawa, Y., Suwa, Y., Akimoto, K., Asami, S., Shimizu, S., Hirose, N., Sugano, M., and Yamada, H. (1995) α-Tocopherol Enhances the Hypocholesterolemic Action of Sesamin in Rats, Int. J. Vit. Nutr. Res. 65, 162–168.

    CAS  Google Scholar 

  38. Yamamoto, K., Fukuda, N., Shiroi, S., Yoshida, K., Hirose, N., Shinmen, Y., Akimoto, K., and Amachi, T. (1995) Effect of Dietary Antioxidants on the Susceptibility to Hepatic Microsomal Lipid Pperoxidation in the Rat, Ann. Nutr. Metabol. 39, 99–106.

    Article  CAS  Google Scholar 

  39. Simán, C.M., and Eriksson, U.J. (1996) Effect of Butylated Hydroxytoluene on α-Tocopherol Content in Liver and Adipose Tissue of Rats, Toxicol. Lett. 87, 103–108.

    Article  PubMed  Google Scholar 

  40. Subba Rao, D., Chandra Sekhara, N., Satyanarayana, N., and Srinivasan, M. (1970) Effect of Curcumin on Serum and Liver Cholesterol Levels in the Rat, J. Nutr. 100, 1307–1316.

    Google Scholar 

  41. Satchithanandam, S., Chanderbhan, R., Kharroubi, A.T., Calvert, R.J., Klurfeld, D., Tepper, S.A., and Kritchevsky, D. (1996) Effect of Sesame Oil on Serum and Liver Lipid Profiles in the Rat, Int. J. Vit. Nutr. Res. 66, 386–392.

    CAS  Google Scholar 

  42. Bieri, J.G., and Evarts, R.P. (1974) Vitamin E Activity of α-Tocopherol in the Rat, Chick and Hamster, J. Nutr. 104, 850–857.

    PubMed  CAS  Google Scholar 

  43. Bieri, J.G., and Evarts, R.P. (1974) Gamma Tocopherol: Metabolism, Biological Activity and Significance in Human Vitamin E Nutrition, Am. J. Clin. Nutr. 27, 980–986.

    PubMed  CAS  Google Scholar 

  44. Leth, T., and Søndergaard, H. (1977) Biological Activity of Vitamin E Compounds and Natural Materials by the Resorption-Gestation Test, and Chemical Determination of the Vitamin E Activity in Foods and Feeds, J. Nutr. 107, 2236–2243.

    PubMed  CAS  Google Scholar 

  45. Tran, K., and Chan, A.C. (1992) Comparative Uptake of α- and γ-Tocopherol by Human Endothelial Cells, Lipids 27, 38–41.

    PubMed  CAS  Google Scholar 

  46. Kayden, H.J., and Traber, M.G. (1993) Absorption, Lipoprotein Transport, and Regulation of Plasma Concentrations of Vitamin E in Humans, J. Lipid Res. 34, 343–358.

    PubMed  CAS  Google Scholar 

  47. Sato, Y., Hagiwara, K., Arai, H., and Inoue, K. (1991) Rurification and Characterization of the α-Tocopherol Transfer Protein from Rat Liver, FEBS Lett. 288, 41–45.

    Article  PubMed  CAS  Google Scholar 

  48. Arita, M., Nomura, K., Arai, H., and Inoue, K. (1997) α-Tocopherol Transfer Protein Stimulates the Secretion of α-Tocopherol from a Cultured Liver Cell Line Through a Brefeldin A-Insensitive Pathway, Proc. Natl. Acad. Sci. USA 94, 12437–12441.

    Article  PubMed  CAS  Google Scholar 

  49. Hosomi, A., Arita, M., Sato, Y., Kiyose, C., Ueda, T., Igarashi, O., Arai, H., and Inoue, K. (1997) Affinity for α-Tocopherol Transfer Protein as a Determinant of the Biological Activities of Vitamin E Analogs FEBS Lett. 409, 105–108.

    Article  PubMed  CAS  Google Scholar 

  50. Traber, M.G., and Kayden, H.J. (1989) Preferential Incorporation of α-Tocopherol vs. γ-Tocopherol in Human Lipoproteins, Am. J. Clin. Nutr. 49, 517–526.

    PubMed  CAS  Google Scholar 

  51. Bjorneboe, A., Bjorneboe, G.E., and Drevon, C.A. (1987) Serum Half-Life, Distribution, Hepatic Uptake and Biliary Excretion of α-Tocopherol in Rats, Biochim. Biophys. Acta 921, 175–181.

    PubMed  CAS  Google Scholar 

  52. Chiku, S., Hamamura, K., and Nakamura, T. (1984) Novel Urinary Metabolite of d-δ-Tocopherol in Rats, J. Lipid Res. 25, 40–48.

    PubMed  CAS  Google Scholar 

  53. Schonfeld, A., Schultz, M., Petrzika, M., and Gassmann, B. (1993) A Novel Metabolite of RRR-α-Tocopherol in Human Urine, Nahrung 37, 498–500.

    Article  PubMed  CAS  Google Scholar 

  54. Schultz, M., Leist, M., Petrzida, M., Gassmann, B., and Brigelius-Flohe, R. (1995) A Novel Urinary Metabolite of α-Tocopherol: 2,5,7,8-Tetramethyl-2(2′-carboxyethyl)-6-hydroxychroman (α-CEHC) as an Indicator of an Adequate Vitamin E Supply? Am. J. Clin. Nutr. 62 (Suppl), 1527S-1543S.

    PubMed  CAS  Google Scholar 

  55. Swanson, J.E., Ben, R.N., Burton, G.W., and Parker, R.S. (1999) Urinary Excretion of 2,7,8-Trimethyl-2-(β-carboxyethyl)-6-hydroxychroman Is a Major Route of Elimination of γ-Tocopherol in Humans, J. Lipid Res. 40 665–671.

    PubMed  CAS  Google Scholar 

  56. Casida, J.E. (1970) Mixed Function Oxidase Involvement in the Biochemistry of Insecticidal Synergists, J. Agric. Food Chem. 18, 753–772.

    Article  PubMed  CAS  Google Scholar 

  57. Mustacich, D.J., Shields, J., Horton, R.A., Brown, M.K., and Reed, D.J. (1998) Biliary Secretion of α-Tocopherol and the Role of the mdr2 P-Glycoprotein in Rats and Mice, Arch. Biochem. Biophys. 350, 183–192.

    Article  PubMed  CAS  Google Scholar 

  58. Mustacich, D.J., Brown, M.K., and Reed, D.J. (1996) Colchicine and Vinblastine Prevent the Piperonyl Butoxide-Induced Increase in Rat Biliary Output of α-Tocopherol, Toxicol. Applied Pharmacol. 139, 411–417.

    Article  CAS  Google Scholar 

  59. Joint Industrial Safety Council (1997) Chemical Substances, CD-ROM ISBN 91-7522-551-4, Joint Industrial Safety Council, Stockholm.

    Google Scholar 

  60. Björkhem, I., Henriksson-Freyschuss, A., Breuer, O., Diczfalusy, U., Berglund, L., and Henriksson, P. (1991) The Antioxidant Butylated Hydroxytoluene Protects Against Atherosclerosis, Atheroscler. Thromb. 11, 15–22.

    Google Scholar 

  61. Leblanc, G., and Gillette, I.S. (1993) Elevation of Serum Cholesterol Levels in Mice by the Antioxidant Butylated Hydroxyanisole, Biochem. Pharmacol. 45, 513–515.

    Article  PubMed  CAS  Google Scholar 

  62. Tamizhselvi, R., Samikkannu, T., and Niranjali, S. (1995) Pulmonary Phospholipid Changes Induced by Butylated Hydroxy Toluene, an Antioxidant, in Rats, Ind. J. Exper. Biol. 33, 796–797.

    CAS  Google Scholar 

  63. Hirata, F., Fujita, K., Ishikura, Y., Hosoda, K., Ishikawa, T., and Nakamura, H. (1995) Hypocholesteremic Effect of Sesame Lignan in Humans, Atherosclerosis 122, 135–136.

    Article  Google Scholar 

  64. Patil, T.N., and Srinivasan, M. (1971) Hypocholesteremic Effect of Curcumin in Induced Hypercholesterolemic Rats, Ind. J. Exper. Biol. 9, 167–169.

    CAS  Google Scholar 

  65. Seetharamaiah, G.S., and Chandrasekhara, N. (1990) Effect of Oryzanol on Cholesterol Absorption and Biliary and Fecal Bile Acids in Rats, Ind. J. Med. Res. [B] 92, 471–475.

    CAS  Google Scholar 

  66. Igarashi, O., Umeda-Sawada, R., and Fujiyama-Fujiwara, Y. (1995) Effect of Dietary Factors on the Metabolism of Essential Fatty Acids: Focusing on the Components of Spices, in Nutrition, Lipids, Health and Disease (Ong, A.S.H., Niki, E. and Packer, L., eds.), pp. 59–66, AOCS Press, Champaign.

    Google Scholar 

  67. Shimizu, S., Akimoto, K., Shinmen, Y., Kawashima, H., Sugano, M., and Yamada, H. (1991) Sesamin Is a Potent and Specific Inhibitor of Δ5 Desaturase in Polyunsaturated Fatty Acid Biosynthesis, Lipids 26, 512–516.

    PubMed  CAS  Google Scholar 

  68. Dwyer, J.T. (1988) Health Aspects of Vegetarian Diets, Am. J. Clin. Nutr. 48 (suppl.), 712–738.

    PubMed  CAS  Google Scholar 

  69. Steinmetz, K.A., and Potter, J.D. (1991) Vegetables, Fruits and Cancer. II. Mechanisms, Cancer Causes Control 1, 427–442.

    Article  Google Scholar 

  70. Block, G., Patterson, B., and Subar, A. (1992) Fruit, Vegetables and Cancer Prevention: A Review of the Epidemiological Evidence, Nutr. Cancer 18, 1–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afaf Kamal-Eldin.

About this article

Cite this article

Kamal-Eldin, A., Frank, J., Razdan, A. et al. Effects of dietary phenolic compounds on tocopherol, cholesterol, and fatty acids in rats. Lipids 35, 427–435 (2000). https://doi.org/10.1007/s11745-000-541-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-541-y

Keywords

Navigation