Skip to main content
Log in

Transformations of DHEA and its metabolites by rat liver

  • Published:
Lipids

Abstract

Because dehydroepiandrosterone (DHEA) has a wide variety of weak beneficial effects in experimental animals and humans, we searched for metabolites of this steroid in the hope of finding more active compounds that might qualify for the title “steroid hormone”. Incubation of DHEA with rat liver homogenate fortified with energy-yielding substrates resulted in rapid hydroxylation at the 7α-position of the molecule and subsequent conversion to other 7-oxygenated steroids in the sequence DHEA»7α-hydroxyDHEA»7-oxoDHEA»7β-hydroxyDHFA, with branching to diols, triols, and sulfate esters. The ability of these metabolites to induce the formation of liver thermogenic enzyme activity increased from left to right in that sequence. A total of 25 different steroids were characterized, and at least six additional structures that are currently under study were produced from DHEA. 7-OxoDHEA is more effective than DHEA in enhancing memory performance in old mice and in reversing the amnesic effects of scopolamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DHEA:

dehydroepiandrosterone

DHEAS:

the sulfate ester of dehydroepiandrosterone

GDPH:

glycerophosphate dehydrogenase

References

  1. Horgan, J. (1997). End of Science: Facing the Limits of Knowledge in the Twilight of the Scientific Age, Addison-Wesley, Reading, MA.

    Google Scholar 

  2. Parker, L. (1989) Adrenal Androgens in Clinical Medicine, Academic Press, San Diego.

    Google Scholar 

  3. Le Goascogne, C., Robel, P., Gouezou, M., Sananes, N., Baulieu, E.E., and Watermen, M. (1987) Neurosteroids: Cytochrome P450ssc in Rat Brain, Science 237, 1212–1215.

    Article  PubMed  Google Scholar 

  4. Yen, T.T., Allan, J.A., Pearson, D.V., Acton, J.M., and Greenberg, M.M. (1977) Prevention of Obesity in Avy/a Mice by Dehydroepiandrosterone, Lipids 12, 409–413.

    PubMed  CAS  Google Scholar 

  5. Cleary, M.P. (1989) Antiobesity Effect of Dehydroepiandrosterone in the Zucker Rat, in Hormones, Thermogenesis, and Obesity (Lardy, H., and Stratman, F., eds.), pp. 365–376, Elsevier, New York.

    Google Scholar 

  6. Kurzman, I.D., MacEwen, E.G., and Haffa, L.M. (1990) Reduction in Body Weight and Cholesterol in Spontaneously Obese Dogs by Dehydroepiandrosterone, Int. J. Obes., 14, 95–104.

    PubMed  CAS  Google Scholar 

  7. Lee-Currie, Y.R., Wen, P., and McIntosh, M.K., (1997) Dehydroepiandrosterone-Sulfate (DHEAS) Reduces Adipocyte Hyperplasia Associated with Feeding Rats a High-Fat Diet, Int. J. Obes. 21, 1058–1064.

    Article  CAS  Google Scholar 

  8. Kurzman, I.D., Panciera, D., Miller, J.B., and MacEwen, E.G. (1998) The Effect of Dehydroepiandrosterone Combined with a Low-Fat Diet in Spontaneously Obese Dogs: A Clinical Trial, Obes. Res. 6, 20–28.

    PubMed  CAS  Google Scholar 

  9. Kritchevsky, D., Tepper, S., Klurfeld, D., and Schwartz, A.S. (1983) Influence of Dehydroepiandrosterone (DHEA) on Cholesterol Metabolism in Rats, Pharmacol. Res. Commun. 15, 797–803.

    Article  PubMed  CAS  Google Scholar 

  10. Ben-David, M., Dikstein, S., Bismuth, G., and Sulman, F.G. (1967) Antihypercholesterolemic Effect of Dehydroepiandrosterone in Rats, Proc. Soc. Exp. Biol. Med. 125, 1136–1140.

    PubMed  CAS  Google Scholar 

  11. Coleman, D.L., Schwizer, R.L., and Leiter, E.H. (1984) Effect of Genetic Background on the Therapeutic Effects of Dehydroepiandrosterone (DHEA) in Diabetes-Obesity Mutants and in Aged Normal Mice, Diabetes 33, 26–32.

    PubMed  CAS  Google Scholar 

  12. Loria, R., Inge, T.H., Cook, S.S., Szakol, A., and Regelson, W. (1988) Protection Against Acute Lethal Viral Infections with the Native Steroid Dehydroepiandrosterone (DHEA), Med. Virol. 26, 301–314.

    CAS  Google Scholar 

  13. Ben-Nathan, D., Lustig, S., Kobilar, D., Danenberg, H.D., Lupu, E., and Feuerstein, G. (1992) Dehydroepiandrosterone Protects Mice Inoculated with West Nile Virus and Exposed to Cold Stress, J. Med. Virol. 38, 159–166.

    PubMed  CAS  Google Scholar 

  14. Schwartz, A.G. (1979) Inhibition of Spontaneous Breast Cancer Formation in Female C3H(Avy/a) Mice by Long-Term Treatment with Dehydroepiandrosterone, Cancer Res. 39, 1129–1132.

    PubMed  CAS  Google Scholar 

  15. Nyce, J.W., Magee, P.N., Hard, G.C., and Schwartz, A.G. (1984) Inhibition of 1,2-Dimethylhydrazine-Induced Colon Tumorigenesis in Balb/c Mice by Dehydroepiandrosterone, Carcinogeneis 5, 57–62.

    CAS  Google Scholar 

  16. Flood, J.F., Smith, G.E., and Roberts, E. (1988) Dehydroepiandrosterone and Its Sulfate Enhance Memory Retention in Mice, Brain Res. 447, 269–278.

    Article  PubMed  CAS  Google Scholar 

  17. Flood, J.F., and Roberts, E. (1988) Dehydroepiandrosterone Sulfate Improves Memory in Aging Mice, Brain Res. 448, 178–181.

    Article  PubMed  CAS  Google Scholar 

  18. Kalimi, M., and Regelson, W. (eds.) (1990) The Biological Role of Dehydroepiandrosterone (DHEA), DeGruyter, Berlin.

    Google Scholar 

  19. Mortola, J.F., and Yen, S.S. (1990) The Effects of Oral Dehydroepiandrosterone on Endocrine-Metabolic Parameters in Postmenopausal Women, J. Clin. Endocrinol. Metab. 71, 696–704.

    Article  PubMed  CAS  Google Scholar 

  20. Morales, A.J., Nolan, J.J., Nelson, J.C., and Yen, S.S. (1994) Effects of Replacement Doses of Dehydroepiandrosterone in Men and Women of Advancing Age, J. Clin. Endocrinol. Metab. 78, 1360–1367.

    Article  PubMed  CAS  Google Scholar 

  21. Labrie, F., Diamond, P., Cusan, L., Gomez, J.-L., Belanger, A., and Candas, B. (1997) Effect of 12-Month Dehydroepiandrosterone Replacement Therapy on Bone, Vagina, and Endometrium in Postmenopausal Women, J. Clin. Endocrinol. Metab. 82, 3498–3505.

    Article  PubMed  CAS  Google Scholar 

  22. Morales, A.J., Haubrich, R.H., Hwang, J.Y., Asakura, H., and Yen, S.S. (1998) The Effect of Six Months Treatment with a 100 mg Daily Dose of Dehydroepiandrosterone (DHEA) on Circulating Sex Steroids, Body Composition and Muscle Strength in Age-Advanced Men and Women, Clin. Endocrinol. 49, 421–432.

    Article  CAS  Google Scholar 

  23. Labrie, F. (1998) DHEA as a Physiological Replacement Therapy at Menopause, J. Endocrinol. Invest. 21, 399–401.

    PubMed  CAS  Google Scholar 

  24. Barry, N.N., McGuire, J.L., and van Vollenhoven, R. (1998) Dehydroepiandrosterone in Systemic Lupus Erythematosus: Relationship Between Dosage, Serum Levels, and Clinical Response, J. Rheumatol. 27, 2352–2356.

    Google Scholar 

  25. Bloch, M., Schmidt, P.J., Danaceau, M., Adams, L.F., and Rubinow, D.R. (1999) Dehydroepiandrosterone Treatment of Midlife Dysthymia, Biol. Psychiatry 45, 1533–1541.

    Article  PubMed  CAS  Google Scholar 

  26. van Vollenhoven, R.F. (2000) Dehydroepiandrosterone in Systemic Lupus Erythematosus, Rheum. Dis. Clin. North Am. 26, 349–362.

    Article  PubMed  Google Scholar 

  27. Arlt, W., Callies, F., and Allolio, B. (2000) DHEA, Replacement in Women with Adrenal Insufficiency: Pharmacokinetics, Bioconversion, and Clinical Effects on Well-Being, Sexuality, and Cognition, Endocr. Res. 26, 505–511.

    Article  PubMed  CAS  Google Scholar 

  28. Allen, E., and Doisy, E.A. (1923) An Ovarian Hormone. Preliminary Report on Its Location, Extraction and Partial Purification, and Action in Test Animals, J. Am. Med. Assoc. 81, 819–821.

    CAS  Google Scholar 

  29. Bucher, T., and Klingenberg, M. (1958) Weg des Wasserstoffs in der lebendigen Organization, Angew. Chem. 70, 552–570.

    CAS  Google Scholar 

  30. Estabrook, R.W., and Sacktor, B. (1958) α-Glycerophosphate Oxidase of Flight Muscle Mitochondria, J. Biol. Chem. 233, 1014–1019.

    PubMed  CAS  Google Scholar 

  31. Harington, C.R. (1933) The Thyroid Gland, Its Chemistry and Physiology, Oxford University Press, London.

    Google Scholar 

  32. Cori, G.T. (1921) Experimentelle untersuchungen an einem kongenitalen Myxodem, Z. Ges. Exper. Med. 25, 150–169.

    Google Scholar 

  33. Plummer, H.S., and Boothby, W.M. (1923) The Cost of Work in Exophthalmic Goiter, Am. J. Physiol. 63, 406–407.

    Google Scholar 

  34. Briard, S.P., McClintock, J.T., and Baldridge, C.W. (1935) Cost of Work in Patients with Hypermetabolism Due to Leukemia and to Exophthalmic Goiter, Arch. Int. Med. 56, 30–37.

    Google Scholar 

  35. Lee, Y.-P., Takemori, A., and Lardy, H. (1959) Enhanced Oxidation of α-Glycerophosphate by Mitochondria of Thyroid-Fed Rats, J. Biol. Chem. 234, 3051–3054.

    PubMed  CAS  Google Scholar 

  36. Lee, Y.-P., and Lardy, H.A. (1965) Influence of Thyroid Hormones on l-α-Glycerophosphate Dehydrogenase and Other Dehydrogenases in Various Organs of the Rat, J. Biol. Chem. 240, 1427–1436.

    PubMed  CAS  Google Scholar 

  37. Tagliaferro, A., Davis, J.R., Truchon, S., and Van Hamont, N. (1986) Effects of Dehydroepiandrosterone Acetate on Metabolism, Body Weight, and Composition of Male and Female Rats, J. Nutr. 116, 1977–1983.

    PubMed  CAS  Google Scholar 

  38. Lardy, H., Su, C.-Y., Kneer, N., and Wielgus, S. (1989) Dehydroepiandrosterone Induces Enzymes That Permit Thermogenesis and Decrease Metabolic Efficiency, in Hormones, Thermogenesis, and Obesity (Lardy, H., and Stratman, F., eds.), pp. 415–426, Elsevier, New York.

    Google Scholar 

  39. Su, C.-Y., and Lardy, H.A. (1991) Induction of Hepatic Glycerophosphate Dehydrogenase in Rats by Dehydroepiandrosterone, J. Biochem. (Tokyo) 110, 207–213.

    CAS  Google Scholar 

  40. Lardy, H. (1999) Dehydroepiandrosterone and Ergosteroids Affect Energy Expenditure, in Health Promotion and Aging: The Role of Dehydroepiandrosterone (DHEA) (Watson, R.R., ed.), p. 33–42, Harwood, Amsterdam.

    Google Scholar 

  41. Lardy, H., Paetkau, V., and Walter, P. (1965) Paths of Carbon in Gluconeogenesis and Lipogenesis: The Role of Mitochondria in Supplying Precursors of Phosphoenolpyruvate, Proc. Natl. Acad. Sci. USA 53, 1410–1415.

    Article  PubMed  CAS  Google Scholar 

  42. Bobyleva, V., Kneer, N., Bellei, M., Battelli, D., and Lardy, H. (1993) Concerning the Mechanism of Increased Thermogenesis in Rats Treated with Dehydroepiandrosterone, J. Bioenerg. Biomembr. 25, 313–321.

    Article  PubMed  CAS  Google Scholar 

  43. Lardy, H., Partridge, B., Kneer, N., and Wei, Y. (1995) Ergosteroids: Induction of Thermogenic Enzymes in Liver of Rats Treated with Steroids Derived from Dehydroepiandrosterone, Proc. Natl. Acad. Sci. USA 92, 6617–6619.

    Article  PubMed  CAS  Google Scholar 

  44. Lardy, H., Kneer, N., Wei, Y., Partridge, B., and Marwah, P. (1998) Ergosteroids II: Biologically Active Metabolites and Synthetic Derivatives of Dehydroepiandrosterone, Steroids 63, 158–165.

    Article  PubMed  CAS  Google Scholar 

  45. Reich, I.L., Lardy, H., Wei, Y., Marwah, P., Kneer, N., Powell, D.R., and Reich, H.J. (1998) Ergosteroids III: Syntheses and Biological Activity in Secosteroids Related to Dehydroepiandrosterone, Steroids 63, 542–553.

    Article  PubMed  CAS  Google Scholar 

  46. Marwah, P., Marwah, A., Kneer, N., and Lardy, H. (2001) Ergosteroids IV: Synthesis and Biological Activity of Steroid Glucuronides, Ethers, and Alkylcarbonates, Steroids 66, 581–595.

    Article  PubMed  CAS  Google Scholar 

  47. Reich, I.L., Reich, H.J., Kneer, N., and Lardy, H. (2002) Erosteroids V: Preparation and Biological Activity of Various D-Ring Derivatives in the 7-Oxo-dehydroepiandrosterone Series, Steroids 67, 221–233.

    Article  PubMed  CAS  Google Scholar 

  48. Marwah, A., Marwah, P., and Lardy, H. (2002) Ergosteroids VI: Metabolism of Dehydroepiandrosterone in vitro: A Liquid Chromatographic-Mass Spectrometric Study, J. Chromatogr. B 767, 285–299.

    CAS  Google Scholar 

  49. Marwah, A., Marwah, P., and Lardy, H. (2001) High-Performance Liquid Chromatographic Analysis of Dehydroepiandrosterone, J. Chromatogr. A 935, 279–296.

    Article  PubMed  CAS  Google Scholar 

  50. Shi, J., Schulze, S., and Lardy, H. (2000) The Effect of 7-Oxo-DHEA Acetate on Memory in Young and Old C57BL/6 Mice, Steroids 65, 124–129.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Lardy.

About this article

Cite this article

Lardy, H., Marwah, A. & Marwah, P. Transformations of DHEA and its metabolites by rat liver. Lipids 37, 1187–1191 (2002). https://doi.org/10.1007/s11745-002-1019-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-1019-7

Keywords

Navigation