Skip to main content
Log in

Isolation and characterization of a Δ5 FA desaturase from Pythium irregulare by heterologous expression in Saccharomyces cerevisiae and oilseed crops

  • Articles
  • Published:
Lipids

Abstract

By using the polymerase chain reaction approach with two degenerate primers targeting the heme-binding and the third histidine-rich motifs in microsomal carboxyl-directed desaturases, we identified a cDNA PiD5 from Pythium irregulare encoding a Δ5 desaturase. The substrate specificity of the enzyme was studied in detail by expressing PiD5 in a yeast (Saccharomyces cerevisiae) mutant strain, AMY-2α, where ole1, a Δ9 desaturase gene, is disrupted. The result revealed that the encoded enzyme could desaturate unsaturated FA from 16 to 20 carbons beginning with Δ9 and Δ11 as well as Δ8 ethylenic double bonds. Introduction of PiD5 into Brassica juncea under the control of a CaMV 35S constitutive promoter resulted in accumulation of several Δ5-unsaturated polymethylene-interrupted FA (Δ5-UPIFA) including 18∶2−5,9, 18∶2−5,11, 18∶3−5,9,12, and 18∶4−5,9,12,15 in vegetative tissues. The transgenic enzyme could also desaturate the exogenously supplied homo-γ-linolenic acid (20∶3−8,11,14) to arachidonic acid (20∶4−5,8,11,14). Introduction of PiD5 into B. juncea and flax under the control of seed-specific promoters resulted in production of Δ5-UPIFA, representing more than 10% of the total FA in the seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

cyt:

cytochrome

HGLA:

homo-γ-linolenic acid

LA:

linoleic acid

LCPUFA:

long-chain PUFA

ORF:

open reading frame

PCR:

polymerase chain reaction

Δ5-UPIFA:

Δ5-unsaturated polymethylene-interrupted FA

References

  1. Gill, I., and Valivety, R. (1997) Polyunsaturated Fatty Acids, Part 1: Occurrence, Biological Activities and Applications, TIBTECH 15, 401–409.

    CAS  Google Scholar 

  2. Das, U.N. (1990) Gamma-Linolenic Acid, Arachidonic Acid, and Eicosapentaenoic Acid as Potential Anticancer Drugs, Nutrition 6, 429–434.

    PubMed  CAS  Google Scholar 

  3. Babcock, T., Helton, W.S., and Espat, N.J. (2000) Eicosapentaenoic Acid (EPA): An Antiinflammatory ω-3 Fat with Potential Clinical Applications, Nutrition 16, 1116–1118.

    Article  PubMed  CAS  Google Scholar 

  4. Sayanova, O., Smith, M.A., Lapinskas, P., Stobart, A.K., Dobson, G., Christie, W.W., Shewry, P.R., and Napier, J.A. (1997) Expression of a Borage Desaturase cDNA Containing an N-Terminal Cytochrome b5 Domain Results in the Accumulation of High Levels of Δ6-Desaturated Fatty Acids in Transgenic Tobacco, Proc. Natl. Acad. Sci. USA 94, 4211–4216.

    Article  PubMed  CAS  Google Scholar 

  5. Huang, Y.S., Chaudhary, S., Thurmond, J.M., Bobik, E.G., Jr., Yuan, L., Chan, G.M., Kirchner, S.J., Mukerji, P., and Knutzon, D.S. (1999). Cloning of Δ12- and Δ6-Desaturases from Mortierella alpina and Recombinant Production of γ-Linolenic Acid in Saccharomyces cerevisiae, Lipids 34, 649–659.

    Article  PubMed  CAS  Google Scholar 

  6. Napier, J.A., Hey, S.J., Lacey, D.J., and Shewry, P.R. (1998) Identification of a Caenorhabditis elegans Δ6-Fatty-Acid-Desaturase by Heterologous Expression in Saccharomyces cerevisiae, Biochem. J. 330, 611–614.

    PubMed  CAS  Google Scholar 

  7. Girke, T., Schmidt, H., Zahringer, U., Reski, R., and Heinz, E. (1998) Identification of a Novel Δ6-Acyl-Group Desaturase by Targeted Gene Disruption in Physcomitrella patens, Plant J. 15, 39–48.

    Article  PubMed  CAS  Google Scholar 

  8. Cho, H.P., Takamura, M.T., and Clarke, S.D. (1999) Cloning, Expression, and Nutritional Regulation of the Mammalian Δ6 Desaturase, J. Biol. Chem. 274, 471–477.

    Article  PubMed  CAS  Google Scholar 

  9. Saito, T., and Ochiai, H. (1999) Identification of Δ-5 Fatty Acid Desaturase from the Cellular Slime Mold Dictyostelium discoideum, Eur. J. Biochem. 265, 809–814.

    Article  PubMed  CAS  Google Scholar 

  10. Watts, J.L., and Browse, J. (1999) Isolation and Characterization of a Δ5-Fatty Acid Desaturase from Caenorhabditis elegans, Arch. Biochem. Biophy. 362, 175–182.

    Article  CAS  Google Scholar 

  11. Michaelson, L.V., Napier, J.A., Lazarus, C.M., Griffiths, G., and Stobart, A.K. (1998) Isolation of a Δ5-Desaturase Gene from Caenorhabditis elegans, FEBS Lett. 439, 215–218.

    Article  PubMed  CAS  Google Scholar 

  12. Michaelson, L.V., Lazarus, C.M., Griffiths, G., Napier, J.A., and Stobart, A.K. (1998) Isolation of a Δ5-Fatty Acid Desaturase Gene from Mortierella alpina J. Biol. Chem. 273, 19055–19059.

    Article  PubMed  CAS  Google Scholar 

  13. Knutzon, D.S., Thurmond, J.M., Huang, Y.S., Chaudhary, S., Bobik, E.G., Jr., Chan, G.M., Kirchner, S.J., and Mukerji, P. (1998) Identification of Δ5-Desaturase from Mortierella alpina by Heterologous Expression in Baker’s Yeast and Canola, J. Biol. Chem. 273, 29360–29366.

    Article  PubMed  CAS  Google Scholar 

  14. Cho, H.P., Takamura, M.T., and Clarke, S.D. (1999) Cloning, Expression, and Fatty Acid Regulation of the Mammalian Δ5 Desaturase, J. Biol. Chem. 274, 37335–37339.

    Article  PubMed  CAS  Google Scholar 

  15. Leonard, A.E., Kelder, B., Bobik, E.G., Chuan, L.T., Parker-Barnes, J.M., Thurmond, J.M., Kroeger, P.E., Kopchick, J.J., Huang, Y.S., and Mukerji, P. (2000) cDNA Cloning and Characterization of Human Δ5-Desaturase Involved in the Biosynthesis of Arachidonic Acid, Biochem J. 347, 719–724.

    Article  PubMed  CAS  Google Scholar 

  16. Stinson, E.E., Kwoczak, R., and Kurantz, M.J. (1991). Effect of Cultural Conditions on Production of Eicosapentaenoic Acid by Pythium irregulare, J. Ind. Microbiol. 8, 171–178.

    Article  PubMed  CAS  Google Scholar 

  17. Hong, H., Dalta, N., Reed, D.W., Covello, P.S., MacKenzie, S.L., and Qiu, X. (2002) High Level Production of γ-Linolenic Acid in Brassica juncea Using a Δ-6 Desaturase from Pythium irregulare, Plant Physiol. 129, 354–362.

    Article  PubMed  CAS  Google Scholar 

  18. Mitchell, A.G., and Martin, C.E. (1995) A Novel Cytochrome b5-Like Domain Is Linked to the Carboxyl Terminus of the Saccharomyces cerevisiae Δ-9 Fatty Acid, J. Biol. Chem. 270, 29766–29772.

    Article  PubMed  CAS  Google Scholar 

  19. Gietz, D., St. Jean, A., Woods, R.A., and Schiestl, R.H. (1992) Improved Method for High Efficiency Transformation of Intact Yeast Cells, Nucleic Acids Res. 20, 1425.

    PubMed  CAS  Google Scholar 

  20. Qiu, X., Hong, H.P., Datla, N., MacKenzie, S.L., Taylor, C.D., and Thomas, L.T. (2002) Expression of Borage Δ-6 Desaturase in Saccharomyces cerevisiae and Oilseed Crops, Can. J. Bot. 80, 42–49.

    Article  CAS  Google Scholar 

  21. Qiu, X., Reed, D.W., Hong, H.P., Mackenzie, S.L., and Covello, P.S. (2001) Identification and Analysis of a Gene from Calendula officinalis Encoding a Fatty Acid Conjugase, Plant Physiol. 125, 847–855.

    Article  PubMed  CAS  Google Scholar 

  22. Napier, J.A., Sayanova, O., Stobart, A.K., and Shewry, P.R. (1997). A New Class of Cytochrome b5 Fusion Proteins, Biochem. J., 328, 717–720.

    PubMed  CAS  Google Scholar 

  23. Wolff, R.L., Christie, W.W., Pedrono, F., and Marpeau, A.M. (1999) Arachidonic, Eicosapentaenoic, and Biosynthetically Related Fatty Acids in the Seed Lipids from a Primitive Gymnosperm, Agathis robusta, Lipids 34, 1083–1097.

    Article  PubMed  CAS  Google Scholar 

  24. Pasquier, E., Ratnayake, W.M.N., and Wolff, R.L. (2001) Effects of Δ5 Polyunsaturated Fatty Acids of Maritime Pine (Pinum pinaster) Seed Oil on the Fatty Acid Profile of the Developing Brain of Rats, Lipids 36, 567–574.

    PubMed  CAS  Google Scholar 

  25. Cahoon, E.B., Carlson, T.J., Ripp, K.G., Schweiger, B.J., Cook, G.A., Hall, S.E., and Kinney, A.J. (1999) Biosynthetic Origin of Conjugated Double Bonds: Production of Fatty Acid Components of High-Value Drying Oils in Transgenic Soybean Embryos, Proc. Natl. Acad. Sci. USA 96, 12935–12940.

    Article  PubMed  CAS  Google Scholar 

  26. Broun, P., and Somerville, C. (1997) Accumulation of Ricinoleic, Lesquerolic, and Densipolic Acids in Seeds of Transgenic Arabidopsis Plants That Express a Fatty Acyl Hydroxylase cDNA from Castor Bean, Plant Physiol. 113, 933–942.

    Article  PubMed  CAS  Google Scholar 

  27. Broun, P., Boddupalli, S., and Somerville, C. (1998) A Bifunctional Oleate 12-Hydroxylase: Desaturase from Lesquerella fendleri, Plant J. 13, 201–210.

    Article  PubMed  CAS  Google Scholar 

  28. Wolff, R.L., Christie, W.W., Pedrono, F., Marpeau, A.M., Tsevegsuren, N., Aitzetmüller, K., and Gunstone, F.D. (1999) Δ5-Olefinic Acids in the Seed Lipids from Four Ephedra Species and Their Distribution Between the α and β Positions of Triacylglycerols. Characteristics Common to Coniferophytes and Cycadophytes, Lipids 34, 855–864.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Qiu.

Additional information

The sequence reported here (PiD5) has been deposited in GenBank under the accession number AF419297.

About this article

Cite this article

Hong, H., Datla, N., Mackenzie, S.L. et al. Isolation and characterization of a Δ5 FA desaturase from Pythium irregulare by heterologous expression in Saccharomyces cerevisiae and oilseed crops. Lipids 37, 863–868 (2002). https://doi.org/10.1007/s11745-002-0972-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0972-5

Keywords

Navigation