Skip to main content
Log in

Retinal sensitivity loss in third-generation n-3 PUFA-deficient rats

  • Articles
  • Published:
Lipids

Abstract

A previous study conducted in guinea pigs suggested that ingestion of diets high in EPA and DHA may result in suboptimal retinal function. The aim of the present study was to evaluate retinal function in pigmented (Long-Evans) rats, raised to a third generation on diets that were either deficient in n-3 PUFA or adequate (with the addition of DHA). Electroretinographic assessment employed full-field white flash stimulation. Photoreceptor responses were evaluated in terms of peak amplitudes and implicit times (a-wave, b-wave), intensity-response functions (Naka-Rushton), and the parameters of a model of transduction (P3). Retinal phospholipid FA composition was measured by capillary GLC. DHA levels were reduced by 55% in n-3-deficient animals compared with the n-3-adequate group, whereas the levels of docosapentaenoic acid n-6 were 44 times higher in n-3-deficient animals. The level of arachidonic acid was marginally higher (12.8%) in n-6-adequate animals. The n-3-deficient animals exhibited significantly reduced retinal sensitivity (σ and S values were both affected by 0.29 log units) and increased b-wave implicit times compared with those fed the n-3-adequate diet. These data suggest that n-3 PUFA are required for development of retinal sensitivity, more so than other indices of retinal function assessed by current methods, such as maximal response amplitude. However, the benefit for retinal function of adding preformed DHA to diets already replete in n-3 PUFA remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

20∶4n−6 (arachidonic acid)

ALA:

18∶3n−3 (α-linolenic acid)

DPA:

22∶5 (docosapentaenoic acid)

ERG:

electroretinogram

F3:

third generation

FO:

fish oil

LCPUFA:

long-chain polyunsaturated fatty acid

n-3:

omega-3

n-6:

omega-6

P3:

fast P3 model of phototransduction

RAS:

renin-angiotensin system

RMS:

root mean, squared (error term)

References

  1. Daemen, F.J. (1973) Vertebrate Rod Outer Segment Membranes, Biochim. Biophys. Acta 300, 255–288.

    PubMed  CAS  Google Scholar 

  2. Salem, N., Jr. (1989) Omega-3 Fatty Acids: Molecular and Biochemical Aspects, in New Protective Roles for Selected Nutrients (Spiller, G.A., and Scala, J., eds.), pp. 109–228, Alan R. Liss, New York.

    Google Scholar 

  3. Fliesler, S.J., and Anderson, R.E. (1983) Chemistry and Metabolism of Lipids in the Vertebrate Retina, Prog. Lipid Res. 22, 79–131.

    Article  PubMed  CAS  Google Scholar 

  4. Penn, J.S., and Anderson, R.E. (1987) Effect of Light History on Rod Outer-Segment Membrane Composition in the Rat, Exp. Eye Res. 44, 767–778.

    Article  PubMed  CAS  Google Scholar 

  5. Rodriguez-Palmero, M., Koletzko, B., Kunz, C., and Jensen, R. (1999) Nutritional and Biochemical Properties of Human Milk: II. Lipids, Micronutrients, and Bioactive Factors, Clin. Perinatol. 26, 335–359.

    PubMed  CAS  Google Scholar 

  6. Uauy, R.D., Birch, E.E., Birch, D.G., and Hoffman, D.R. (1994) Significance of ω-3 Fatty Acids for Retinal and Brain Development of Preterm and Term Infants, World Rev. Nutr. Diet. 75, 52–62.

    Google Scholar 

  7. Neuringer, M. (1993) The Relationship of Fatty Acid Composition to Function in the Retina and Visual System, in Lipids, Learning, and the Brain: Fats in Infant Formulas, Report of the 103rd Ross Conference on Paediatric Research (Dobbing, J., ed.), pp. 134–163, Ross Laboratories, Columbus.

    Google Scholar 

  8. Weisinger, H.S., Vingrys, A.J., and Sinclair, A.J. (1996) The Effect of Docosahexaenoic Acid on the Electroretinogram of the Guinea Pig, Lipids 31, 65–70.

    Article  PubMed  CAS  Google Scholar 

  9. Weisinger, H.S., Vingrys, A.J., Bui, B.V., and Sinclair, A.J. (1999) Effects of Dietary n-3 Fatty Acid Deficiency and Repletion in the Guinea Pig Retina, Invest. Ophthalmol. Vis. Sci. 40, 327–338.

    PubMed  CAS  Google Scholar 

  10. Makrides, M., Neumann, M., Simmer, K., Pater, J., and Gibson, R. (1995) Are Long-Chain Polyunsaturated Fatty Acids Essential Nutrients in Infancy? Lancet 345, 1463–1468.

    Article  PubMed  CAS  Google Scholar 

  11. Jeffrey, B.G., Weisinger, H.S., Neuringer, M., and Mitchell, D.C. (2001) The Role of Docosahexaenoic Acid in Retinal Function, Lipids 36, 859–871.

    PubMed  CAS  Google Scholar 

  12. Benolken, R.M., Anderson, R.E., and Wheeler, T.G. (1973) Membrane Fatty Acids Associated with the Electrical Response in Visual Excitation, Science 182, 1253–1254.

    Article  PubMed  CAS  Google Scholar 

  13. Wheeler, T.G., Benolken, R.M., and Anderson, R.E. (1975) Visual Membranes: Specificity of Fatty Acid Precursors for the Electrical Response to Illumination, Science 188, 1312–1314.

    Article  PubMed  CAS  Google Scholar 

  14. Mitchell, D.C., Niu, S.L., and Litman, B.J. (2001) Optimization of Receptor-G Protein Coupling by Bilayer Lipid Composition I: Kinetics of Rhodopsin-Transducin Binding, J. Biol. Chem. 276, 42801–42806.

    PubMed  CAS  Google Scholar 

  15. Organisciak, D.T., Darrow, R.M., Jiang, Y.L., and Blanks, J.C. (1996) Retinal Light Damage in Rats with Altered Levels of Rod Outer Segment Docosahexaenoate, Invest. Ophthalmol. Vis. Sci. 37, 2243–2257.

    PubMed  CAS  Google Scholar 

  16. Wiegand, R.D., Giusto, N.M., Rapp, L.M., and Anderson, R.E. (1983) Evidence for Rod Outer Segment Lipid Peroxidation Following Constant Illumination of the Rat Retina, Invest. Ophthalmol. Vis. Sci. 24, 1433–1435.

    PubMed  CAS  Google Scholar 

  17. Wiegand, R.D., Joel, C.D., Rapp, L.M., Nielsen, J.C., Maude, M.B., and Anderson, R.E. (1986) Polyunsaturated Fatty Acids and Vitamin E in Rat Rod Outer Segments During Light Damage, Invest. Ophthalmol. Vis. Sci. 27, 727–733.

    PubMed  CAS  Google Scholar 

  18. Hood, D.C., and Birch, D.G. (1997) Assessing Abnormal Rod Photoreceptor Activity with the a-Wave of the Electroretinogram: Applications and Methods, Doc. Ophthalmol. 92, 253–267.

    CAS  Google Scholar 

  19. Litman, B.J., and Mitchell, D.C. (1996) A Role for Phospholipid Polyunsaturation in Modulating Membrane Protein Function, Lipids 31, S193-S197.

    Article  PubMed  CAS  Google Scholar 

  20. Bourre, J.M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., and Durand, G. (1989) The Effects of Dietary Alpha-Linolenic Acid on the Composition of Nerve Membranes, Enzymatic Activity, Amplitude of Electrophysiological Parameters, Resistance to Poisons and Performance of Learning Tasks in Rats, J. Nutr. 119, 1880–1892.

    PubMed  CAS  Google Scholar 

  21. Vingrys, A.J., Weisinger, H.S., and Sinclair, A.J. (1998) The Effect of Age and n-3 PUFA Level on the ERG in the Guinea Pig, in Lipids and Infant Nutrition (Sinclair, A., and Huang, Y., eds.), pp. 85–99, AOCS Press, Champaign.

    Google Scholar 

  22. Reeves, P., Neilsen, F., and Fahey, G. (1993) Committee Report on the AIN-93 Purified Rodent Diet, J. Nutr. 123, 1939–1951.

    PubMed  CAS  Google Scholar 

  23. Leat, W.M.F., Curtis, R., Millichamp, N.J., and Cox, R.W. (1986) Retinal Function in Rats and Guinea Pigs Reared on Diets Low in Essential Fatty Acids and Supplemented with Linoleic or Linolenic Acids, Ann. Nutr. Metab. 30, 166–174.

    Article  PubMed  CAS  Google Scholar 

  24. Wainwright, P.E., Huang, Y.S., Coscina, D.V., Levesque, S., and McCutcheon, D. (1994) Brain and Behavioral Effects of Dietary n-3 Deficiency in Mice: A Three Generational Study, Dev. Psychobiol. 27, 467–487.

    Article  PubMed  CAS  Google Scholar 

  25. Weisinger, H.S., Vingrys, A.J., and Sinclair, A.J. (1995) Dietary Manipulation of Long-Chain Polyunsaturated Fatty Acids in the Retina and Brain of Guinea Pigs, Lipids 30, 471–473.

    PubMed  CAS  Google Scholar 

  26. Birch, D., and Jacobs, G.H. (1975) Behavioral Measurements of Rat Spectral Sensitivity, Vision Res. 15, 687–691.

    Article  PubMed  CAS  Google Scholar 

  27. Fulton, A.B., Hansen, R.M., and Findl, O. (1995) The Development of the Rod Photoresponse from Dark-Adapted Rats, Invest. Ophthalmol. Vis. Sci. 36, 1038–1045.

    PubMed  CAS  Google Scholar 

  28. Severns, M.L., and Johnson, M.A. (1993) The Care and Fitting of Naka-Rushton Functions to Electroretinographic Intensity-Response Data, Doc. Ophthalmol 85, 135–150.

    Article  PubMed  CAS  Google Scholar 

  29. Lamb, T.D., and Pugh, E.N., Jr. (1992) A Quantitative Account of the Activation Steps Involved in Phototransduction in Amphibian Photoreceptors, J. Physiol. 449, 719–758.

    PubMed  CAS  Google Scholar 

  30. Smith, N.P., and Lamb, T.D. (1997) The a-Wave of the Human Electroretinogram Recorded with a Minimally Invasive Technique, Vision Res. 37, 2943–2952.

    Article  PubMed  CAS  Google Scholar 

  31. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. (1992) Numerical Recipes in C. The Art of Scientific Computing, Cambridge University Press, New York.

    Google Scholar 

  32. Schwertner, H.A., and Mosser, E.L. (1993) Comparison of Lipid Fatty Acids on a Concentration Basis vs. Weight Percentage Basis in Patients With and Without Coronary Artery Disease or Diabetes, Clin. Chem. 39, 659–663.

    PubMed  CAS  Google Scholar 

  33. Galli, C., White, H.B., Jr., and Paoletti, R. (1971) Lipid Alterations and Their Reversion in the Central Nervous System of Growing Rats Deficient in Essential Fatty Acids, Lipids 6, 378–387.

    PubMed  CAS  Google Scholar 

  34. Hood, D.C., and Birch, D.G. (1993) Light Adaptation of Human Rod Receptors: The Leading Edge of Human a-Wave and Models of Rod Receptor Activity, Vision Res. 33, 1605–1618.

    Article  PubMed  CAS  Google Scholar 

  35. Futterman, S., Downer, J.L., and Hendrickson, A. (1971) Effect of Essential Fatty Acid Deficiency on the Fatty Acid Composition, Morphology, and Electroretinographic Response of the Retina, Invest. Ophthalmol. 10, 151–156.

    PubMed  CAS  Google Scholar 

  36. Litman, B.J., Niu, S.L., Polozova, A., and Mitchell, D.C. (2001) The Role of Docosahexaenoic Acid Containing Phospholipids in Modulating G Protein-Coupled Signaling Pathways: Visual Transduction, J. Mol. Neurosci. 16, 237–242; discussion 279–284.

    Article  PubMed  CAS  Google Scholar 

  37. Brown, M.F. (1994) Modulation of Rhodopsin Function by Properties of the Membrane Bilayer, Chem. Phys. Lipids 73, 159–180.

    Article  PubMed  CAS  Google Scholar 

  38. Bush, R.A., Malnoe, A., Reme, C.E., and Williams, T.P. (1994) Dietary Deficiency of n-3 Fatty Acids Alters Rhodopsin Content and Function in the Rat Retina, Invest. Ophthalmol. Vis. Sci. 35, 91–100.

    PubMed  CAS  Google Scholar 

  39. Calvert, P.D., Govardovskii, V.I., Krasnoperova, N., Anderson, R.E., Lem, J., and Makino, C.L. (2001) Membrane Protein Diffusion Sets the Speed of Rod Phototransduction, Nature 411, 90–94.

    Article  PubMed  CAS  Google Scholar 

  40. Armitage, J.A., Burns, P.L., Sinclair, A.J., Weisinger, H.S., Vingrys, A.J., and Weisinger, R.S. (2001) Perinatal Omega-3 Fatty Acid Deprivation Alters Thirst and Sodium Appetite in Adult Rats, Appetite 37, 258.

    Google Scholar 

  41. Weisinger, H.S., Armitage, J.A., Sinclair, A.J., Vingrys, A.J., Burns, P.L., and Weisinger, R.S. (2001) Perinatal Omega-3 Fatty Acid Deficiency Affects Blood Pressure Later in Life, Nat. Med. 7, 258–259.

    Article  PubMed  CAS  Google Scholar 

  42. Jacobi, P.C., Osswald, H., Jurklies, B., and Zrenner, E. (1994) Neuromodulatory Effects of the Renin-Angiotensin System on the Cat Electroretinogram, Invest. Ophthalmol. Vis. Sci. 35, 973–980.

    PubMed  CAS  Google Scholar 

  43. Neuringer, M., Connor, W.E., Lin, D.S., and Anderson, G.J. (1993) Effects of n-3 Fatty Acid Deficiency on Retinal Physiology and Function, in The Third International Congress on Essential Fatty Acids and Eicosanoids (Sinclair, A.J., and Gibson, R.A., eds.), pp. 161–164, AOCS Press, Champaign.

    Google Scholar 

  44. Pawlowsky, R.J., Denkins, Y., Ward, G., and Salem, N., Jr. (1997) Retinal and Brain Accretion of Long-Chain Polyunsaturated Fatty Acids in Developing Felines: The Effects of Corn Oil-Based Maternal Diets, Am. J. Clin. Nutr. 65, 465–472.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harrison S. Weisinger.

Additional information

This study was conducted at the Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health.

About this article

Cite this article

Weisinger, H.S., Armitage, J.A., Jeffrey, B.G. et al. Retinal sensitivity loss in third-generation n-3 PUFA-deficient rats. Lipids 37, 759–765 (2002). https://doi.org/10.1007/s11745-002-0958-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0958-3

Keywords

Navigation