Skip to main content
Log in

Identification and expression of mammalian long-chain PUFA elongation enzymes

  • Articles
  • Published:
Lipids

Abstract

In mammalian cells, Sprecher has proposed that the synthesis of long-chain PUFA from the 20-carbon substrates involves two consecutive elongation steps, a Δ6-desaturation step followed by retroconversion (Sprecher, H., Biochim. Biophys. Acta 1486, 219–231, 2000). We searched the database using the translated sequence of human elongase ELOVL5, whose encoded enzyme elongates monounsaturated and polyunsaturated FA, as a query to identify the enzyme(s) involved in elongation of very long chain PUFA. The database search led to the isolation of two cDNA clones from human and mouse. These clones displayed deduced amino acid sequences that had 56.4 and 58% identity, respectively, to that of ELOVL5. The open reading frame of the human clone (ELOVL2) encodes a 296-amino acid peptide, whereas the mouse clone (Elovl2) encodes a 292-amino acid peptide. Expression of these open reading frames in baker's yeast, Saccharomyces cerevisiae, demonstrated that the encoded proteins were involved in the elongation of both 20-and 22-carbon long-chain PUFA, as determined by the conversion of 20∶4n−6 to 22∶4n−6, 22∶4n−6 to 24∶4n−6, 20∶5n−3 to 22∶5n−3, and 22∶5n−3 to 24∶5n−3. The elongation activity of the mouse Elovl2 was further demonstrated in the transformed mouse L cells incubated with long-chain (C20-and C22-carbon) n−6 and n−3 PUFA substrates by the significant increase in the levels of 24∶4n−6 and 24∶5n−3, respectively. This report demonstrates the isolation and identification of two mammalian genes that encode very long chain PUFA specific elongation enzymes in the Sprecher pathway for DHA synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid (20∶4n−6)

ALA:

α-linolenic acid (18∶3n−3)

LA:

linoleic acid (18∶2n−6)

m-ELO:

mouse L cells cloned with mouse elongase gene Elov12

References

  1. Samuelsson, B. (1983) From Studies of Biochemical Mechanism to Novel Biological Mediators: Prostaglandin Endoperoxides, Thromboxanes, and Leukotrienes. Nobel Lecture, 8 December 1982, Biosci. Rep. 3, 791–813.

    Article  PubMed  CAS  Google Scholar 

  2. Carlson, S.E., Werkman, S.H., Peeples, J.M., Cooke, R.J., and Tolley, E.A. (1993) Arachidonic Acid Status Correlates with First Year Growth in Preterm Infants, Proc. Natl. Acad. Sci. USA 90, 1073–1077.

    Article  PubMed  CAS  Google Scholar 

  3. Crawford, M.A., Costeloe, K., Ghebremeskel, K., Phylactos, A., Skirvin, L., and Stacey, F. (1997) Are Deficits of Arachidonic and Docosahexaenoic Acids Responsible for the Neural and Vascular Complications of Preterm Babies? Am. J. Clin. Nutr. 66, 1032S-1041S.

    PubMed  CAS  Google Scholar 

  4. Uauy, R., Peirano, P., Hoffman, D., Mena, P., Birch, D., and Birch, E. (1996) Role of Essential Fatty Acids in the Function of the Developing Nervous System, Lipids 31, S167-S176.

    PubMed  CAS  Google Scholar 

  5. Horrobin, D.F. (1992) Nutritional and Medical Importance of gamma-Linolenic Acid, Prog. Lipid Res. 31, 163–194.

    Article  PubMed  CAS  Google Scholar 

  6. Poulos, A. (1995) Very Long Chain Fatty Acids in Higher Animals—A Review, Lipids 30, 1–14.

    PubMed  CAS  Google Scholar 

  7. Voss, A., Reinhart, M., Sankarappa, S., and Sprecher, H. (1991) The Metabolism of 7,10,13,16,19-Docosapentaenoic Acid to 4,7,10,13,16,19-Docosahexaenoic Acid in Rat Liver Is Independent of a 4-Desaturase, J. Biol. Chem. 266, 19995–20000.

    PubMed  CAS  Google Scholar 

  8. Wang, N., and Anderson, R.E. (1993) Synthesis of Docosahexaenoic Acid by Retina and Retinal Pigment Epithelium, Biochemistry 32, 13703–13709.

    Article  PubMed  CAS  Google Scholar 

  9. Mohammod, B.S., Sankarappa, S., Geiger, M., and Sprecher, H. (1995) Reevaluation of the Pathway for the Metabolism of 7,10,13,16-Docosatetraenoic Acid to 4,7,10,13,16-Docosapentaenoic Acid in Rat Liver, Arch. Biochem. Biophys. 317, 179–184.

    Article  Google Scholar 

  10. Moore, S.A., Hurt, E., Yoder, E., Sprecher, H., and Spector, A.A. (1995) Docosahexaenoic Acid Synthesis in Human Skin Fibroblasts Involves Peroxisomal Retroconversion of Tetracosahexaenoic Acid, J. Lipid Res. 36, 2433–2443.

    PubMed  CAS  Google Scholar 

  11. Sprecher, H. (2000) Metabolism of Highly Unsaturated n−3 and n−6 Fatty Acids, Biochim. Biophys. Acta 1486, 219–231.

    PubMed  CAS  Google Scholar 

  12. Delton-Vandenbroucke, I., Grammas, P., and Anderson, R.E. (1997) Polyunsaturated Fatty Acid Metabolism in Retinal and Cerebral Microvascular Endothelial Cells, J. Lipid Res. 38, 147–159.

    PubMed  CAS  Google Scholar 

  13. Caruso, D., Risé, P., Galella, G., Regazzoni, C., Toia, A., Galli, G., and Galli, C. (1994) Formation of 22 and 24 Carbon 6-Desaturated Fatty Acids from Exogenous Deuterated Arachidonic Acid Is Activated in THP-1 Cells at High Substrate Concentrations, FEBS Lett. 343, 195–199.

    Article  PubMed  CAS  Google Scholar 

  14. Sprecher, H. (1996) New Advances in Fatty-Acid Biosynthesis; Nutrition 12, S5-S7.

    PubMed  CAS  Google Scholar 

  15. Marzo, I., Alava, M.A., Piñeiro, A., and Naval, J. (1996) Biosynthesis of Docosahexaenoic Acid in Human Cells: Evidence That Two Different Δ6-Desaturase Activities May Exist, Biochim. Biophys. Acta 1301, 263–272.

    PubMed  Google Scholar 

  16. Luthria, D.L., and Sprecher, H. (1997) Studies to Determine if Rat Liver Contains Multiple Chain Elongating Enzymes, Biochim. Biophys. Acta 1346, 221–230.

    PubMed  CAS  Google Scholar 

  17. Sprecher, H., Luthria, D.L., Mohammed, B.S., and Baykousheva, S.P. (1995) Reevaluation of the Pathways for the Biosynthesis of Polyunsaturated Fatty Acids, J. Lipid Res. 36, 2471–2477.

    PubMed  CAS  Google Scholar 

  18. Su, H.-M., Moser, A.B., Moser, H.W., and Watkins, P.A. (2001) Peroxisomal Straight-Chain Acyl-CoA Oxidase and D-Bifunctional Protein Are Essential for the Retroconversion Step in Docosahexaenoic Acid Synthesis, J. Biol. Chem. 276, 38115–38120.

    PubMed  CAS  Google Scholar 

  19. Leonard, A.E., Bobik, E.G., Dorado, J., Kroeger, P.E., Chuang, L.-T., Thurmond, J.M., Parker-Barnes, J.M., Das, T., Huang, Y.-S., and Mukerji, P. (2000) Cloning of a Human cDNA Encoding a Novel Enzyme Involved in the Elongation of Long-Chain Polyunsaturated Fatty Acids, Biochem. J. 350, 765–770.

    Article  PubMed  CAS  Google Scholar 

  20. Tvrdik, P., Westerberg, R., Silve, S., Asadi, A., Jakobsson, A., Cannon, B., Loison, G., and Jacobsson, A. (2000) Role of a New Mammalian Gene Family in the Biosynthesis of Very Long Chain Fatty Acids and Sphingolipids, J. Cell Biol. 149, 707–717.

    Article  PubMed  CAS  Google Scholar 

  21. Oh, C.-S., Toke, D.A., Mandala, S., and Martin, C.E. (1997) ELO2 and ELO3, Homologues of the Saccharomyces cerevisiae ELO1 Gene, Function in Fatty Acid Elongation and Are Required for Sphingolipid Formation, J. Biol. Chem. 272, 17376–17384.

    Article  PubMed  CAS  Google Scholar 

  22. Knutzon, D.S., Thurmond, J.M., Huang, Y.-S., Chaudhary, S., Bobik, E.G., Jr., Chan, G.M., Kirchner, S.J., and Mukerji, P. (1998) Identification of Δ5-Desaturase from Mortierella alpina by Heterologous Expression in Bakers' Yeast and Canola, J. Biol. Chem. 273, 29360–29366.

    Article  PubMed  CAS  Google Scholar 

  23. Wigler, M., Pellicer, A., Silverstein, S., and Axel, R. (1978) Biochemical Transfer of Single-Copy Eucaryotic Genes Using Total Cellular DNA as Donor, Cell 14, 725–731.

    Article  PubMed  CAS  Google Scholar 

  24. Kelder, B., Richmond, C., Stavnezer, E., List, E.O., and Kopchick, J.J. (1997) Production, Characterization, and Functional Activities of v-Ski in Cultured Cells, Gene 202, 15–21.

    Article  PubMed  CAS  Google Scholar 

  25. Huang, Y.-S., Chaudhary, R., Thurmond, J.M., Bobik, E.G., Jr., Yuan, L., Chan, G.M., Kirchner, S., Mukerji, P., and Knutzon, D.S. (1999) Cloning of Δ12-and Δ6-Desaturases from Mortierella alpina and Recombinant Production of γ-Linolenic acid in Saccharomyces cerevisiae, Lipids 34, 649–659.

    Article  PubMed  CAS  Google Scholar 

  26. Kelder, B., Mukerji, P., Kirchner, S., Hovanec, G., Leonard, A.E., Chuang, L.-T., Kopchick, J.J., and Huang, Y.-S. (2001) Expression of Fungal Desaturase Genes in Cultured Mammalian Cells, Mol. Cell. Biochem. 219, 7–11.

    Article  PubMed  CAS  Google Scholar 

  27. Innis, S.M., Sprecher, H., Hachey, D., Edmond, J., and Anderson, R.E. (1999) Neonatal Polyunsaturated Fatty Acid Metabolism, Lipids 34, 139–149.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Sheng Huang.

About this article

Cite this article

Leonard, A.E., Kelder, B., Bobik, E.G. et al. Identification and expression of mammalian long-chain PUFA elongation enzymes. Lipids 37, 733–740 (2002). https://doi.org/10.1007/s11745-002-0955-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0955-6

Keywords

Navigation