Skip to main content
Log in

Platelet phospholipids are differentially protected against oxidative degradation by plasmalogens

  • Articles
  • Published:
Lipids

Abstract

The oxidative degradation of phospholipids in the presence and absence of plasmalogens (plasmenyl phosphatidylethanolamine: PPE) was followed by chemical analysis. Human platelet phospholipids, either intact or after removal of PPE by acid treatment, were oxidized with 28 mM 2,2′-azobis(2-amidinopropane di-HCl in Triton X-100 micelles (detergent/phospholipid 5∶1, mol/mol). PPE (12% of all phospholipids, mol/mol) disappeared about three times more rapidly than glycerophospholipids, whereas sphingomyelin remained unaltered and the lysophosphatidylethanolamine (lysoPE) generated became progressively more unsaturated. After 60 min oxidation, the FA compositions of PS, PC, and PI were similar in extracts with or without plasmalogens. In contrast, diacyl phosphatidylethanolamine (DPE) became more saturated in the absence of PPE. The rate of phospholipid destruction was always unique to each class, but for all phospholipids slowed down in the presence of PPE. This protective effect increased in the order DPE<PS<PC<PI and did not seem to be simply related to the class unsaturation. α-Tocopherol had no influence on the time courses of the quantities and compositions of the phospholipids, even at a molar ratio of α-tocopherol to phospholipids four times higher than in platelet membranes. Thus, PPE protected phospholipids efficiently but differentially against peroxidative attack, whereas the contribution of α-tocopherol appeared to be negligible even at a concentration four times greater than in platelet membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-azobis(2-amidinopropane) di-HCl

DPE:

diacyl phosphatidylethanolamine

lysoPE:

lysophosphatidylethanolamine

PPE:

plasmenyl phosphatidylethanolamine (plasmalogens)

SM:

sphingomyelin

References

  1. Iuliano, L., Colavita, A.R., Leo, R., Pratico, D., and Violi, F. (1997) Oxygen Free Radicals and Platelet Activation, Free Rad. Biol. Med. 22, 999–1006.

    Article  PubMed  CAS  Google Scholar 

  2. Joseph, M. (1995) The Generation of Free Radicals by Blood Platelets, in Handbook of Immunopharmacology (Joseph, M., ed.), pp. 209–225, Academic Press, London.

    Google Scholar 

  3. Brosche, T., and Platt, D. (1998) The Biological Significance of Plasmalogens in Defense Against Oxidative Damage, Exp. Gerontol. 33, 363–369.

    Article  PubMed  CAS  Google Scholar 

  4. Bolli, R., Patel, B.S., Jeroudi, M.O., Lai, E.K., and McCay, P.B. (1988) Demonstration of Free Radical Generation in “Stunned” Myocardium of Intact Dogs with the Use of the Spin Trap α-Phenyl N-tert-Butyl Nitrone, J. Clin. Invest. 82, 476–485.

    Article  PubMed  CAS  Google Scholar 

  5. Yavin, E., and Gatt, S. (1972) Oxygen-Dependent Cleavage of the Vinyl-Ether Linkage of Plasmalogens 1. Cleavage by Rat-Brain Supernatant, Eur. J. Biochem. 25, 431–436.

    Article  PubMed  CAS  Google Scholar 

  6. Garg, M.L., and Haerdi, J.C. (1993) The Biosynthesis and Functions of Plasmalogens, J. Clin. Biochem. Nutr. 14, 71–82.

    CAS  Google Scholar 

  7. Lee, T.C. (1998) Biosynthesis and Possible Biological Functions of Plasmalogens, Biochim. Biophys. Acta 1394, 129–145.

    PubMed  CAS  Google Scholar 

  8. Morand, O.H., Zoeller, R.A., and Raetz, C.R.H. (1988) Disappearance of Plasmalogens from Membranes of Animal Cells Subjected to Photosensitized Oxidation, J. Biol. Chem. 263, 11597–11606.

    PubMed  CAS  Google Scholar 

  9. Zoeller, R.A., Lake, A.C., Nagan, N., Gaposchkin, D.P., Legner, M.A., and Lieberthal, W. (1999) Plasmalogens as Endogenous Antioxidants: Somatic Cell Mutants Reveal the Importance of the Vinyl Ether, Biochem. J. 338, 769–776.

    Article  PubMed  CAS  Google Scholar 

  10. Engelmann, B., Brautigam, C., and Thiery, J. (1994) Plasmalogen Phospholipids as Potential Protectors Against Lipid Peroxidation of Low Density Lipoproteins, Biochem. Biophys. Res. Comm. 204, 1235–1242.

    Article  PubMed  CAS  Google Scholar 

  11. Felde, R., and Spiteller, G. (1995) Plasmalogen Oxidation in Human Serum Lipoproteins, Chem. Phys. Lipids 76, 259–267.

    Article  PubMed  CAS  Google Scholar 

  12. Hahnel, D., Beyer, K., and Engelmann, B. (1999) Inhibition of Peroxyl Radical-Mediated Lipid Oxidation by Plasmalogen Phospholipids and α-Tocopherol, Free Rad. Biol. Med. 27, 1087–1094.

    Article  PubMed  CAS  Google Scholar 

  13. Zommara, M., Tachibana, N., Mitsui, K., Nakatani, N., Sakono, M., Ikeda, I., and Imaizumi, K. (1995) Inhibitory Effect of Ethanolamine Plasmalogen on Iron- and Copper-Dependent Lipid Peroxidation, Free Rad. Biol. Med. 18, 599–602.

    Article  PubMed  CAS  Google Scholar 

  14. Khaselev, N., and Murphy, R.C. (1999) Susceptibility of Plasmenyl Glycerophosphoethanolamine Lipids Containing Arachidonate to Oxidative Degradation, Free Rad. Biol. Med. 26, 275–284.

    Article  PubMed  CAS  Google Scholar 

  15. Sindelar, P.J., Guan, Z., Dallner, G., and Ernster, L. (1999) The Protective Role of Plasmalogens in Iron-Induced Lipid Peroxidation, Free Rad. Biol. Med. 26, 318–324.

    Article  PubMed  CAS  Google Scholar 

  16. Reiss, D., Beyer, K., and Engelmann, B. (1997) Delayed Oxidative Degradation of Polyunsaturated Diacyl Phospholipids in the Presence of Plasmalogen Phospholipids in vitro, Biochem. J. 323, 807–814.

    PubMed  CAS  Google Scholar 

  17. Takamura, H., Tanaka, K.I., Matsuura, T., and Kito, M. (1989) Ether Phospholipid Molecular Species in Human Platelets, J. Biochem. 105, 168–172.

    PubMed  CAS  Google Scholar 

  18. Cazenave, J.P., Hemmendinger, S., Beretz, A., Sutter-Bay, A., and Launay, J. (1983) L’agrégation plaquettaire: Outil d’investigation clinique et étude pharmacologique. Méthodologie, Ann. Biol. Clin. 41, 167–179.

    CAS  Google Scholar 

  19. Leray, C., Andriamampandry, M., Gutbier, G., Cavadenti, J., Klein-Soyer, C., Gachet, C., and Cazenave, J.P. (1997) Quantitative Analysis of Vitamin E, Cholesterol and Phospholipid Fatty Acids in a Single Aliquot of Human Platelets and Cultured Endothelial Cells, J. Chromatogr. 696, 33–42.

    CAS  Google Scholar 

  20. Pugh, E.L., Kates, M., and Hanahan, D.J. (1977) Characterization of the Alkyl Ether Species of Phosphatidylcholine in Bovine Heart, J. Lipid Res. 18, 710–716.

    PubMed  CAS  Google Scholar 

  21. Leray, C., Pelletier, X., Hemmendinger, S., and Cazenave, J.P. (1987) Thin-Layer Chromatography of Human Platelet Phospholipids with Fatty Acid Analysis, J. Chromatogr. 420, 411–416.

    PubMed  CAS  Google Scholar 

  22. Khaselev, N., and Murphy, R.C. (2000) Structural Characterization of Oxidized Phospholipid Products Derived from Arachidonate-Containing Plasmenyl Glycerophosphocholine, J. Lipid Res. 41, 564–572.

    PubMed  CAS  Google Scholar 

  23. Wang, J.Y., Shibata, T., Ueki, T., and Miyazawa, T. (1995) Susceptibility for Hydroperoxide Formation of Phosphatidylcholine and Phosphatidylethanolamine in Liposomes, J. Nutr. Sci. Vitaminol. (Tokyo) 41, 273–280.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Gachet.

About this article

Cite this article

Leray, C., Cazenave, JP. & Gachet, C. Platelet phospholipids are differentially protected against oxidative degradation by plasmalogens. Lipids 37, 285–290 (2002). https://doi.org/10.1007/s11745-002-0892-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0892-4

Keywords

Navigation